MCDONALDS POND RESTORATION SITE 2009 Annual Monitoring Report (Year 4)

Richmond County, North Carolina EEP Project No. D04020-2 Design Firm: International Paper

March 2010

- Prepared for: NCDENR ECOSYSTEM ENHANCEMENT PROGRAM 1652 Mail Service Center Raleigh, North Carolina 27699-1619
- Prepared by: PBS&J 1616 East Millbrook Road, Suite 310 Raleigh, North Carolina 27609

This Page Left Blank Intentionally

MCDONALDS POND RESTORATION SITE 2009 Annual Monitoring Report (Year 4)

RICHMOND COUNTY, NORTH CAROLINA

PREPARED BY:

RESOURCE MANAGEMENT SERVICE, LLC PROJECT MANAGER: TONY DOSTER 2704-C Exchange Drive Wilmington, NC 28405

AND

PBS&J PROJECT MANAGER: JENS GERATZ 1616 East Millbrook Road, Suite 310 Raleigh, NC 27609

March 2010

This Page Left Blank Intentionally

EXECUTIVE SUMMARY

Introduction

In response to a Request for Proposal (RFP, No. 16-D04016) issued in December of 2003, International Paper Company (IP) proposed the establishment of the McDonalds Pond Restoration Site (hereafter referred to as the "Site") located in Richmond County, approximately two (2) miles northeast of the town of Hamlet and three (3) miles east of the town of Rockingham. In order to provide stream channel restoration and riverine wetland restoration, IP has removed the McDonalds Pond Dam (Dam) located on Falling Creek. The Site comprises approximately 128 acres, and includes the 17.7 acre McDonalds Pond (a.k.a Shepards Lake), portions of Falling Creek, numerous headwater tributaries and over 80 acres of forested riparian wetlands, seepage wetlands, and marsh wetlands.

The Dam was removed in a manner to minimize potential impacts to water resources both upstream and downstream of the dam. Gradual dewatering and phased dam removal were undertaken to avoid introducing sediments and pollutants into the receiving Falling Creek reaches downstream. Heavy equipment operated from or within the footprint of the former Dam during dam removal operations, thereby minimizing the impact to the adjacent intact forest and wetland soil. Dam removal began with the dewatering (lowering) of the pond in the fall of 2005, followed by the clearing of trees and small bushes from the former earthen dam in February 2006. Excavation activities continued for approximately two weeks until dam removal was complete in mid-March 2006.

PBS&J initiated beaver management and minor grading activities on the former Dam location during Year 4 monitoring. Beaver management was performed by the USDA wildlife service, and grading was then performed in order to remove the existing beaver dam and lower the elevation of the former Dam. Once grading activities were complete, an approximate 2-acre area was replanted.

Monitoring Plan

Monitoring activities began in March 2006 (Year 1), and will be performed for at least five-years or until success criteria are achieved. Post removal monitoring data will be compared to reference sites as well as biological baseline values collected in September 2004. Primary success criteria of the project include: 1) the successful classification of restored/enhanced reaches as functioning systems, 2) channel stability indicative of a stable stream system, 3) development of characteristic lotic aquatic communities, 4) establishment of wetland hydrology (as defined in the U.S. Army Corps of Engineers [USACE] Wetlands Delineation Manual) within the former pond footprint, and 5) vegetative success of 320 stems/acre after the third year of monitoring and 260 stems/acre after the fifth and final year of monitoring. The following monitoring report describes the results of monitoring activities completed during (2009) Year 4 monitoring.

Year 4 Monitoring Results (2009)

Stream Assessment

Restored and enhanced segments of Falling Creek contain braided, anastomosed, bifurcated, and single-threaded channels characteristic of the area. Restored and enhanced stream segments across the Site have

further developed stream pattern, profile, and dimension similar to that of reference reaches. Crosssections located within the former pond indicate that deposited pond sediment continues to be transported downstream, as evidenced by increased bankfull areas. In addition, stream banks have further stabilized with native planted vegetation.

Aquatic community assemblages within the former pond have maintained characteristics of a natural lotic system. Forty-nine percent (49%) of the macroinvertebrate samples taken in October 2009 (Year 4) from restored segments of Falling Creek (within the former pond) consisted of macroinvertebrate genera predominantly found in lotic systems. Genera predominantly found in lentic systems represented only seven percent (7%) of species collected within the former pond from the Year 4 samples.

North Carolina Division of Water Quality (NCDWQ) Habitat Assessment Forms (HAFs) were completed at multiple locations along the restored and enhanced segments of Falling Creek. The HAF scores indicate that the restored and enhanced stream segments contain in-stream habitat characteristic of reference reaches.

Wetland Vegetation Assessment

Vegetation monitoring for Year 4 was performed based on the Carolina Vegetation Survey (CVS) Levels 1 and 2 at eight (8) 10 x 10 meter plots. Following the remedial grading and supplemental planting activities performed at the site of the former dam, two new vegetation monitoring plots were established. Based on Year 4 monitoring, the average count of surviving planted species is 552 stems per acre. If volunteer species are included, the total survival increases to 2,526 stems per acre. The Site exceeds the established success criteria of 320 stems/acre and is on track to exceed the success criteria of 260 stems/acre after the fifth and final year.

Wetland Hydrology Assessment

Three of the four groundwater gauges (Gauges 1, 2, and 4) located on-Site have registered water levels within the upper 12 inches of the soil surface for at least 28 consecutive days (Richmond County, NRCS) or 12.5 percent (12.5%) of the growing season. Due to the malfunction of Gauge 3, the frequency for which groundwater was within 12 inches cannot be determined. PBS&J installed new gauges on-Site in advance of the final year of monitoring. Based on previous and current year gauge data, as well as visual observations of inundation, wetland hydrology at the Site is meeting the required success criteria.

Summary

Following the third year of monitoring, restored streams within the former pond have continued to develop stable lotic conditions typical of reference systems. Pattern, profile, and dimension data obtained from channel surveys indicate that stream geomorphology continues to shift toward that of reference reaches. Stable single-threaded (E-channel) and braided (DA-channel) streams have developed at the Site. Groundwater gauge data within the former pond indicates restored wetland hydrology and closely resembles that of the upstream reference gauge. Vegetation surveys support the establishment of a Streamhead Pocosin/Atlantic White Cedar forest community with thriving planted and volunteer species. Stream, wetland vegetation, and wetland hydrology success criteria were met in Year 4 monitoring.

TABLE OF CONTENTS

EXECU	JTIVE S	UMMA	.ii
1.0	PROJE	CT BAG	CKGROUND1
	1.1	Locatio	on and Setting
	1.2	Restora	ation Structure and Objectives1
	1.3	Project	Objectives
	1.4	Project	History and Background
2.0	PROJE	CT COI	NDITION AND MONITORING RESULTS5
	2.1	Stream	Assessment
			Stream Channel Morphology
		2.1.2	Stream Problem Areas
		2.1.3	Aquatic Communities
		2.1.4	Habitat Assessment
	2.2	Wetlan	d Assessment
		2.2.1	Vegetation Assessment
		2.2.2	Groundwater Hydrology
		2.2.3	Wetland Criteria Attainment
REFER	ENCES		

APPENDICIES

Appendix A: Figures

- 1. Site Location
- 2. Stream Monitoring Plan View
- 3. Stream Monitoring Reach Plan Views
- 4. Vegetation Monitoring Plots
- 5. Monitoring Gauges

Appendix B: Stream Geomorphology Data

- Appendix C: Aquatic Community Data
- Appendix D: NCDWQ Habitat Assessment Field Data Sheet: Coastal Plain
- Appendix E: Vegetation Monitoring Plot Photos
- Appendix F: Groundwater Gauge Hydrograph

Appendix G: Remedial Grading As-Built Letter of Completion

LIST OF TABLES

Table 1.	Summary of Stream and Wetland Mitigation Units	.2
Table 2.	Project Activity and Reporting History	.3
Table 3.	Project Contacts	
Table 3.	Project Contacts (Cont.)	.4
Table 4.	Project Background	.4
Table 5.	Baseline Morphology and Hydrologic Summary	.7
Table 6.	Morphology and Hydraulic Monitoring Summary	. 8
Table 6a.	Morphology and Hydraulic Monitoring Summary (Cont.)	.9
Table 6b.	Morphology and Hydraulic Monitoring Summary (Cont.)	0
Table 7.	Benthic Macroinvertebrate Metric Summary	3
Table 8.	NCDWQ Habitat Assessment Form Scores	4
Table 9.	Stem Counts for Planted Species Arranged by Plot1	6
Table 9a.	Stem Counts for Planted Species at New Plots 1	6
Table 9b.	Stem Counts for Volunteer Species Arranged by Plot	17
Table 10.	Wetland Criteria Attainment1	8

1.0 PROJECT BACKGROUND

1.1 Location and Setting

The North Carolina Ecosystem Enhancement Program (EEP) is currently developing stream and wetland restoration strategies for the Yadkin-Pee Dee River Basin, Cataloging Unit 03040201. As a part of this effort, International Paper (IP) was selected to complete the McDonalds Pond Restoration Project located in Richmond County. The McDonalds Pond Restoration Site ('hereafter referred to as the "Site") is located approximately two (2) miles northeast of the town of Hamlet and three (3) miles east of the town of Rockingham between NC Route 1 and NC Route 177 (Figure 1, Appendix A).

1.2 Restoration Structure and Objectives

Falling Creek, the major drainage feature on-Site, was previously impounded by the McDonalds Pond Dam (Dam), constructed over 70 years ago. Approximately 3,700 linear feet of Falling Creek and tributaries were impacted by the construction of the Dam including streams contained within the pond footprint, as well as stream sections located both up and downstream of the pond. In addition, approximately 17.7 acres of riverine wetland were inundated with the construction of the Dam. Approximately 4.2 acres of the floodplain immediately upstream of the pond were impacted by the "backwater effect" (the backing-up of water), creating marsh wetlands with saturated conditions unsuitable for historic wetland communities. An eroded pond outfall channel located at the northern extent of the Dam drained adjacent wetlands and redirected historic flows of the Falling Creek floodplain.

Stream restoration efforts were achieved through the removal of the Dam resulting in the restoration of 2,969 linear feet of stream. The former Dam was excavated to the approximate level of the pre-existing valley contours, allowing the stream unrestricted flow through the Site. Stream restoration efforts were designed to utilize passive stream channel restoration processes, allowing the channel to reestablish naturally following the removal of the Dam. Stream enhancement (Level I) was achieved through the removal of the Dam and the filling of the northern outfall channel, which returned the historic hydrologic characteristics (stream volume and velocity) to 770 feet of impacted stream channel downstream of the former Dam. Riverine wetland restoration was accomplished within the former 17.7 acre pond footprint through the excavation of the Dam and the establishment of native Streamhead Pocosin and Atlantic White Cedar forest communities. Additionally, the Site includes the preservation of 5,800 linear feet of stream, 77.8 acres of wetland, and 25.6 acres of upland/wetland ecotone buffer.

1.3 **Project Objectives**

The primary project goals include 1) the restoration of a stable, meandering stream channel through the areas impacted by the Dam, 2) the restoration of historic lotic aquatic communities that represent the Site's natural range in variation, 3) the restoration of historic wetland conditions within the pond footprint, and 4) the restoration of natural wetland plant communities within their historic locations.

Additional potential benefits of the project include the restoration of wildlife functions associated with a riparian corridor and stable stream and the enhancement of water quality function in the on-Site, upstream, and downstream segments of Falling Creek and tributaries.

The specific goals of this project are to:

- Restore approximately 2,969 linear feet of historic stream course, flow volumes, and patterns through the marsh wetlands, McDonalds Pond footprint, and immediately downstream of the existing dam.
- Enhance an additional approximate 770 linear feet of Falling Creek downstream of the restored stream channel extending into the gas line easement (Figure 2, Appendix A)
- Protect the headwaters of Falling Creek that are located within the Site through preservation of approximately 5,800 linear feet of Falling Creek and associated tributaries.
- Restore approximately 17.7 acres of forested riverine wetlands within the McDonalds Pond footprint.
- Enhance 4.2 acres of forested riverine wetlands within the marsh wetlands located at the head of McDonalds Pond.
- Preserve 77.8 acres of forested riverine wetlands adjacent to Falling Creek and associated tributaries.
- Restore and enhance habitat for vegetation and wildlife species, characteristic of Streamhead Pocosin and Atlantic White Cedar Forest (Schafale and Weakley 1990).
- Enhance the function and value of the Falling Creek wetland community through the preservation of 25.6 acres of buffer along the Falling Creek stream/wetland complex.

Table 1. Sun	nmary of St	ream and V	Wetland Mitig	gation Units	
Restoration Activities	Linear feet	Acres	Mitigation Ratios	Percentage of Mitigation Units	Mitigation Units
Stream Restoration	1,784	N/A	1:1		1,784
Stream Restoration (undefined channel)	1,185	N/A	1:1	75	1,185
Stream Enhancement (Level I)	770	N/A	1:1.5		513
Stream Preservation	5,800	N/A	1:5	25	1,160
	Total Str	eam Mitiga	tion Units (SN	MUs) Provided	4,642
]	Fotal SMUs U	nder Contract	4,364
Wetlands Restoration	N/A	17.7	1:1	75	17.7
Wetland Enhancement	N/A	4.2	1:2	25	2.1
Wetlands Preservation	N/A	19	1:5	25	3.8
2	Fotal Wetla	nd Mitigat	ion Units (WN	MUs) Provided	23.6
		Т	otal WMUs U	nder Contract	23.4

1.4 **Project History and Background**

Table 2. Project Activity	and Reporting	History	
Activity Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery
Restoration Plan	*NA	July 2005	August 2005
Final Design (90%)	*NA	July 2005	August 2005
Construction	*NA	N/A	March 2006
Temporary S&E mix applied to entire project area	*NA	N/A	March 2006
Bare Root Seedling Installation	*NA	N/A	March 2006
Mitigation Plan	*NA	June 2006	July 2006
Final Report	*NA	Oct 2006	Oct 2006
Year 1 Vegetation Monitoring	Dec 2006	Oct 2006	Dec 2006
Year 1 Stream Monitoring	Dec 2006	Oct 2006	Dec 2006
Year 2 Vegetation Monitoring	Dec 2007	Oct 2007	February 2008
Year 2 Stream Monitoring	Dec 2007	Oct 2007	February 2008
Year 3 Vegetation Monitoring	Dec 2008	Oct 2008	Dec 2008
Year 3 Stream Monitoring	Dec 2008	Oct 2008	Dec 2008
Year 4 Vegetation Monitoring	Dec 2009	Oct 2009	Feb 2010
Year 4 Stream Monitoring	Dec 2009	Oct 2009	Feb 2010
Remedial Earthwork and Supplemental Planting	Sep 2009	Sep 2009	Sep 2009

*NA – Scheduled completion dates unknown due to unanticipated project delays.

Table 3. Pi	roject Contacts
Designer	6400 Poplar Avenue
International Paper	Memphis, TN 38197
	(901) 419-1854
Construction Contractor	28723 Marston Road
Environmental Repair, Inc.	Marston, NC 28363
	(910) 280-6043
Planting Contractor	
Garcia Forest Service, Inc.	PO Box 789
	Rockingham, NC 28379
	(910) 997-5011
Resource Management Service, LLC	2704-C Exchange Drive
(Supplemental Planting)	Wilmington, NC 28405
	910-790-1074
Seeding Contactor	
Environmental Repair, Inc.	28723 Marston Road
	Marston, NC 28363
	(910) 280-6043

Table 3. Proj	ect Contacts (Cont.)
Nursery Stock Suppliers	
International Paper	5594 Highway 38 South
	Blenheim, SC 29516
	(843) 528-3203
North Carolina Division of Forest Resources	726 Claridge Nursery Road
	Goldsboro, NC 27530
	(919) 731-7988
ArborGen	P.O. Box 840001
	Summerville, SC 29484
	(843) 851-4129
Monitoring Performers	
PBS&J	1616 East Millbrook Road, Suite 310
	Raleigh, NC 27609
	(919) 876-6888
Stream and Wetland Monitoring POC	Jens Geratz

Table 4. Pro	ject Background
Project County	Richmond
Drainage Area	2.5 square miles
Impervious cover estimate (%)	<5 percent
Stream Order	3rd order
Physiographic Region	Southeastern Plains
Ecoregion (Griffith and Omernik)	Sandhills
Rosgen Classification of As-built	DA5/E5
Cowardin Classification	Stream (R2UB2)
Dominant soil types	Johnston (JmA)
	Ailey (AcB, AcC)
	Candor-Wakulla Complex (CaC, WcB)
Reference Site ID	Falling Creek
USGS HUC for Project and Reference	03040201
NCDWQ Sub-basin for Project and Reference	03-07-16
NCDWQ classification for Project and Reference	WSIII
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a	Yes
303d listed segment?	
Reasons for 303d listing or stressor	Aquatic weeds
Percent of project easement fenced	NA

2.0 PROJECT CONDITION AND MONITORING RESULTS

The monitoring results described herein document the Year 4 (2009) monitoring activities. Stream monitoring activities continued at two (2) stream reaches that were established in April 2006. Each monitoring reach is approximately 150 feet in length and is comprised of one (1) stream cross-section where stream profile and dimension are monitored. Another 575 feet of stream channel profile and eight (8) cross-sections were added to the Site monitoring activities in October 2006 (Figure 2, Appendix A). Wetland vegetation monitoring activities were conducted in September 2009 and consist of an inventory of planted and volunteer species within eight (8) plots located throughout the former pond (Figure 4, Appendix A). Wetland hydrology monitoring activities include groundwater gauge monitoring conducted throughout the growing season (March 27 - November 5) (NRCS 1999) at four (4) gauges located within the former pond (Figure 5, Appendix A).

2.1 Stream Assessment

2.1.1 Stream Channel Morphology

Stream channel cross-sectional surveys were performed at ten (10) on-Site monitoring locations in September 2009 [XS1-8 and XSR2-3] (Figure 2, Appendix 2). Bankfull channel geometry for surveyed cross-sections are presented in Tables 5, 6, 6a, and 6b. Cross-section parameters were not generated for XS2, XS7, or XS8 where stream braiding has resulted in multiple active channels. Stream pattern parameters including channel beltwidth, radius of curvature, meander wavelength, and meander width ratio were not generated from this year's survey data, but will be re-evaluated during Year 5 monitoring. Cross-section plots are represented in Figures B1-B10 in Appendix B. Bankfull elevations depicted in cross-section plots were adjusted as needed.

In general, bankfull channel parameters were largely unchanged compared to conditions assessed during Year 3 monitoring. Scouring and transportation of bank and bed material was detected at some monitoring cross-sections where restored channels continue to migrate toward reference conditions. Soil subsidence has diminished as herbaceous and woody vegetation further stabilize the soil and begin to provide shading to the developing forest floor.

Stream longitudinal profile was surveyed for approximately 900 feet within the restored channel, including the section of stream between on-Site Reach 3 and on-Site Reach 2 (Figure 2, Appendix A). Longitudinal profile data for this portion of the stream is plotted along with Year 1 conditions in Figure B-11, Appendix B. The Site's natural low gradient and the large amount of coarse woody debris present within the channel has produced numerous depositional features (traverse and diagonal bars) scattered among scour pools of varying sizes. As a result, longitudinal profile parameters were not generated for the stream due to the complexity and irregularity of the channel bed.

The stream channel substrate is naturally comprised of more than 90 percent (90%) sand throughout the Site. As a result, substrate sampling was not conducted at the cross-sections and is not included with the summarized cross-sectional parameters in Tables 5-6b.

EEP Project No. D04020-2

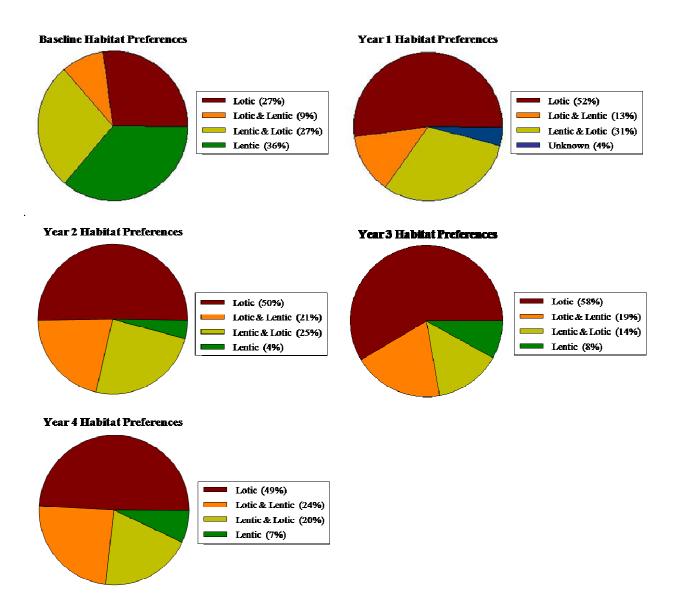
This Page Left Blank Intentionally

			Table 5.	Base	eline M	orpholog	gy and l	Hydrolo	gic Sum	mary					
	Reg	gional C	urve	Refe	rence S	Stream	Refe	erence S	tream		As-Bui	lt		As-Buil	t
Parameter	Interval			Reach 1			Reach 4			On-Site Reach 2			On-Site Reach 3		
				(23)	(233 linear feet)			(175 linear feet)			(186 linear feet)			3 linear	feet)
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	9.6	13.5	12.7	N/A	N/A	13.0	N/A	N/A	9.1	N/A	N/A	7.9	N/A	N/A	11.3
Floodprone Width (ft)	300.0	600.0	400.0	N/A	N/A	500.0	N/A	N/A	300.0	N/A	N/A	450.0	N/A	N/A	400.0
BF Cross Sectional Area (ft ²)	9.4	18.1	16.1	N/A	N/A	14.3	N/A	N/A	9.0	N/A	N/A	7.6	N/A	N/A	10.8
BF Mean Depth (ft)	1.0	1.3	1.3	N/A	N/A	1.1	N/A	N/A	1.0	N/A	N/A	1.0	N/A	N/A	1.0
BF Max Depth (ft)	N/A	N/A	N/A	N/A	N/A	1.9	N/A	N/A	2.0	N/A	N/A	1.3	N/A	N/A	1.5
Width/Depth Ratio	9.8	10.0	9.9	N/A	N/A	11.4	N/A	N/A	9.2	N/A	N/A	8.3	N/A	N/A	11.7
Entrenchment Ratio	28.4	49.7	32.2	N/A	N/A	38.6	N/A	N/A	33.0	N/A	N/A	57.0	N/A	N/A	35.5
Wetted Perimeter (ft)	N/A	N/A	N/A	N/A	N/A	14.9	N/A	N/A	10.9	N/A	N/A	9.4	N/A	N/A	12.4
Hydraulic Radius (ft)	N/A	N/A	N/A	N/A	N/A	1.0	N/A	N/A	0.8	N/A	N/A	0.8	N/A	N/A	0.9
Pattern															
Channel Beltwidth (ft)	N/A	N/A	N/A	18.2	35.5	22.1	12.6	18.5	14.0	19.3	22.6	21.0	8.9	20.9	11.0
Radius of Curvature (ft)	N/A	N/A	N/A	18.6	46.3	21.1	4.2	27.7	6.8	10.3	24.3	15.8	4.1	18.2	13.4
Meander Wavelength	N/A	N/A	N/A	61.2	88.1	78.9	17.5	44.6	21.6	39.1	59.9	47.9	19.1	49.2	28.0
Meader Width Ratio	N/A	N/A	N/A	1.4	2.8	1.7	1.5	2.2	1.6	1.6	1.9	1.7	1.5	2.2	1.9
Profile															
Riffle Length (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Riffle Slope (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Pool Length (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Pool Spacing (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Substrate		-				-					-				
d50 (mm)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
d84 (mm)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Additional Reach Parameters							1								
Valley Length (ft)		N/A			N/A			N/A			N/A			N/A	
Channel Length (ft)	6 (1)			N/A			N/A			N/A			N/A		
Sinuosity	5		1	1.3		1	1.1		1	1.1			1.1		
Water Surface Slope (ft/ft)				1	0.003		1	0.005		1	0.004			0.004	
BF Slope (ft/ft)		N/A			0.003		1	0.005		0.004				0.004	
Rosgen Classification		N/A			E5		1	E5		E5			E5		
Habitat Index		N/A			NA*		1	NA*		NA*			NA*		
Macrobenthos		N/A			NA*			NA*			NA*			NA*	

			Tab	le 6.	Morph	ology	and Hy	drauli	c Moni	toring	Summa	ary							
Parameter	Cross-Section XS1							Cross-Section XS2					Cross-Section XS3						
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	
BF Width (ft)	11.8	11.8	9.5	10.9			NA*	NA*	NA*	NA*			8.4	8.8	8.3	8.7			
Floodprone Width (ft)	400.0	400.0	400.0	400.0			NA*	NA*	NA*	NA*			400.0	400.0	400.0	400.0			
BF Cross Sectional Area (ft ²)	4.9	4.9	5.3	6.4			NA*	NA*	NA*	NA*			4.2	6.3	4.7	6.0			
BF Mean Depth (ft)	0.4	0.4	0.6	0.6			NA*	NA*	NA*	NA*			0.5	0.7	0.6	0.7			
BF Max Depth (ft)	0.8	0.8	0.8	0.9			NA*	NA*	NA*	NA*			1.0	1.2	0.9	1.2			
Width/Depth Ratio	28.9	28.8	17.3	18.2			NA*	NA*	NA*	NA*			16.7	12.4	14.8	12.4			
Entrenchment Ratio	33.8	33.9	42.0	36.7			NA*	NA*	NA*	NA*			47.9	45.4	48.3	45.9			
Wetted Perimeter (ft)	12.1	11.1	9.8	9.8			NA*	NA*	NA*	NA*			9.3	8.7	8.6	8.6			
Hydraulic Radius (ft)	0.4	0.4	0.5	0.6			NA*	NA*	NA*	NA*			0.4	0.7	0.5	0.7			
Substrate																			
d50 (mm)	NA*	NA*	NA*				NA*	NA*	NA*	NA*			NA*	NA*	NA*	NA*			
d84 (mm)	NA*	NA*	NA*				NA*	NA*	NA*	NA*			NA*	NA*	NA*	NA*			
Parameter	MY	2-01 (20	006)	MY	-02 (20	007)	MY	-03 (20	008)	MY	-04 (20)09)	MY	7-05 (20	010)	MY	7+ (201	11)	
.	10		36.1	20				1.16	37.1				10		36.1	2.6		36.1	
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	
Channel Beltwidth (ft)	8.9	22.6	15.6	NA*	NA*	NA*	6.9	32.3	15.5	NA*	NA*	NA*							
Radius of Curvature (ft)	4.1	24.3	13.4	NA*	NA*	NA*	5.6	29.2	21.0	NA*	NA*	NA*							
Meander Wavelength	19.1	59.9	38.0	NA*	NA*	NA*	18.4	70.4	49.0	NA*	NA*	NA*							
Meader Width Ratio	1.5	2.2	1.9	NA*	NA*	NA*	0.8	2.5	1.52	NA*	NA*	NA*							
Profile	N T 4 -14	N T A -14	3 7 4 -14	D.T.A.du	374.0	3.7.4 db	N TA de	374.4	N T A	D T A de	A.T.A.sh	374.4		I			1	1	
Riffle Length (ft)	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*							
Riffle Slope (ft)	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*							
Pool Length (ft)	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*							
Pool Spacing (ft)	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*							
Additional Reach Parameters	[
Valley Length (ft)		N/A			N/A			N/A			N/A								
Channel Length (ft)		N/A			N/A			N/A			N/A								
Sinuosity		1.1			1.1			1.1			1.1								
Water Surface Slope (ft/ft)		0.004			0.004			0.004			0.004								
BF Slope (ft/ft)		0.004		1	0.004		ł	0.004		ł	0.004		1						
Rosgen Classification		DA5/E5			DA5/E5			DA5/E5			DA5/E5								
Habitat Index		NA*		Ì	NA*			NA*			NA*								
Macrobenthos		NA*		1	NA*		1	NA*		1	NA*								

		ſ	Fable 6	a. Mo	rpholo	gy and	l Hydra	ulic M	onitoriı	ng Sum	mary ((Cont.)						
Parameter		Cr	oss-Sec	tion XS	54			Cro	ss-Secti	ion XSF	R2			C	ross-Sec	tion XS	55	
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	25.1	29.8	37.3	25.0			7.9	8.9	10.8	8.8			6.4	19.2	23.47	25.4		
Floodprone Width (ft)	500.0	500.0	500.0	500.0			450.0	450.0	450.0	450.0			400.0	400.0	400.0	400.0		
BF Cross Sectional Area (ft ²)	6.7	14.0	24.3	25.8			7.6	8.7	11.4	9.3			3.9	6.9	12.6	16.7		
BF Mean Depth (ft)	0.3	0.5	0.7	1.0			1.0	1.0	1.0	1.1			0.6	0.4	0.5	0.7		
BF Max Depth (ft)	0.9	1.9	1.6	1.9			1.3	1.6	1.6	1.6			1.9	2.2	1.3	2.0		
Width/Depth Ratio	96.7	64.8	57.3	25.0			8.2	9.1	10.5	8.0			10.6	53.3	43.5	38.8		
Entrenchment Ratio	19.9	16.8	13.4	20.0			57.0	50.6	41.4	51.1			62.9	20.9	21.3	15.7		
Wetted Perimeter (ft)	25.2	30.4	26.8	25.2			9.4	10.3	9.0	9.4			8.6	21.0	9.6	8.6		
Hydraulic Radius (ft)	0.3	0.5	0.9	1.0			0.8	0.9	1.3	1.0			0.5	0.3	1.3	1.9		
Substrate				-	T	r		1	r	1		r		T	1		1	
d50 (mm)	NA*	NA*	NA*	NA*			NA*	NA*	NA*	NA*			NA*	NA*	NA*	NA*		
d84 (mm)	NA*	NA*	NA*	NA*			NA*	NA*	NA*	NA*			NA*	NA*	NA*	NA*		
Parameter		Cro	oss-Sect	tion XS	R3			Cre	oss-Sec	tion XS	6			Cr	oss-Sec	tion XS	57	
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	11.3	16.1	15.5	11.3			13.9	21.7	23.7	22.1			NA*	NA*	NA*	NA*		
Floodprone Width (ft)	400.0	400.0	400.0	400.0			350.0	350.0	350.0	350.0			NA*	NA*	NA*	NA*		
BF Cross Sectional Area (ft ²)	10.8	11.4	12.7	8.8			8.1	13.1	12.7	15.4			NA*	NA*	NA*	NA*		
BF Mean Depth (ft)	1.0	0.7	0.8	0.8			0.6	0.6	0.5	0.7			NA*	NA*	NA*	NA*		
BF Max Depth (ft)	1.5	1.8	1.5	1.4			2.5	3.3	1.9	1.9			NA*	NA*	NA*	NA*		
Width/Depth Ratio	11.7	22.9	20.7	14.1			24.0	36.2	44.7	31.6			NA*	NA*	NA*	NA*		
Entrenchment Ratio	35.5	24.9	24.21	35.4			25.1	16.1	21.1	15.8			NA*	NA*	NA*	NA*		
Wetted Perimeter (ft)	12.4	16.7	8.9	12.4			15.0	24.8	16.3	15.0			NA*	NA*	NA*	NA*		
Hydraulic Radius (ft)	0.9	0.7	1.4	0.7			0.5	0.5	0.8	1.0			NA*	NA*	NA*	NA*		
Substrate																		
d50 (mm)	NA*	NA*	NA*	NA*			NA*	NA*	NA*	NA*			NA*	NA*	NA*	NA*		
d84 (mm)	NA*	NA*	NA*	NA*			NA*	NA*	NA*	NA*			NA*	NA*	NA*	NA*		

		Tał	ole 6b.	Morp	oholog	y and]	Hydra	ulic Mo	onitori	ing Sur	nmary	(Cont	.)					
Parameter		Cr	oss-Seo	ction X	S 8													
Discontinu	N/N/1	MNO	MNO	34374	14375	MNZ .	MX1	MVO	MNO	14374	14375	MNZ .	MX1	MNO	14375	14374	14375	MX.
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	NA*	NA*	NA*	NA*														
Floodprone Width (ft)	NA*	NA*	NA*	NA*														
BF Cross Sectional Area (ft ²)	NA*	NA*	NA*	NA*														
BF Mean Depth (ft)	NA*	NA*	NA*	NA*														
BF Max Depth (ft)	NA*	NA*	NA*	NA*														
Width/Depth Ratio	NA*	NA*	NA*	NA*														
Entrenchment Ratio	NA*	NA*	NA*	NA*														
Wetted Perimeter (ft)	NA*	NA*	NA*	NA*														
Hydraulic Radius (ft)	NA*	NA*	NA*	NA*														
Substrate																		
d50 (mm)	NA*	NA*	NA*	NA*														
d84 (mm)	NA*	NA*	NA*	NA*														


2.1.2 Stream Problem Areas

During Year 4 monitoring, PBS&J initiated beaver management and minor grading activities on the former Dam location in September 2009. Beaver management was performed by the USDA Wildlife Service within the beaver impoundment established at the former dam footprint. Grading was then performed in order to remove all components of the existing beaver dam. Minor grading was also targeted at lowering the elevation of the former Dam in areas where the residual footprint was above adjacent floodplain elevations. Grading will reduce opportunities for beavers to re-construct dams during the remaining project monitoring. Once grading activities were complete, an approximate 2-acre area (including 1.5 acres of inundation from beaver activity) was replanted according to reference plant communities at agency required stocking levels (Jan 2010). Subsequent beaver management was also performed in the upstream reference reaches after PBS&J staff observed beaver dam construction during stream channel cross-sectional surveys. Additional beaver management will be implemented as necessary in the final year of monitoring. A remedial grading as-built letter of completion is provided in Appendix G.

2.1.3 Aquatic Communities

Benthic macroinvertebrates were sampled within Falling Creek during Year 4 monitoring in late September 2009. Aquatic community data, located in Appendix C, are based on laboratory identifications of benthic macroinvertebrate taxa by Pennington and Associates, Inc., a NCDWQ-certified lab. A temporal comparison between collected benthic habitat and their preferences are provided in Graph 1.

Forty-nine percent (49%) of the macroinvertebrate samples collected during Year 4 monitoring from restored segments of Falling Creek (within the former pond) consisted of macroinvertebrate genera predominantly found in lotic systems. This is a decrease since Year 3 monitoring; however, macroinvertebrate genera favoring lotic systems have increased 22 percent compared to baseline samples collected prior to dam removal. Genera found in both lotic and lentic systems (with a preference for lotic) increased five percent within Falling Creek, while genera favoring lentic and lotic (with a preference for lentic) also increased. Genera predominantly found in lentic systems made up only seven percent of taxa collected from Falling Creek.

Graph 1. Comparisons between collected benthic macroinvertebrates and their habitat preferences (Source: Merritt and Cummins 1984).

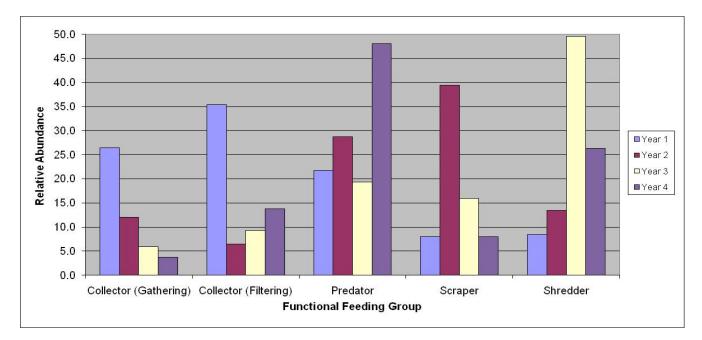
In addition to benthic macroinvertebrate habitat preference comparisons, other comparative metrics including the total number of organisms collected, the total taxa represented in the collection, the richness (diversity) of EPT taxa, and the biotic index can be used to evaluate aquatic habitat restoration. Table 7 summarizes the mean values for all these metrics from benthic macroinvertebrates collected within Falling Creek prior to dam removal and all subsequent monitoring years.

ſ	Table 7. Benthic Macroinvertebrate Metric Summary											
Monitoring Year	Total Organisms	Total Taxa	EPT Richness	Biotic Index*								
Baseline (2005)	32	15	2	7.42								
Year 1 (2006)	209	35	16	5.33								
Year 2 (2007)	187	38	12	4.95								
Year 3 (2008)	73	24	8	5.21								
Year 4 (2009)	148	37	12	5.43								

*The biotic index is derived from North Carolina Tolerance Values that are assigned to each collected species. These Tolerance Values range from 0 for organisms intolerant of organic wastes to 10 for organisms very tolerant of organic wastes.

As seen in Table 7, comparative metrics from Year 4 monitoring have greatly improved from Year 3 and have returned to values closer to those of 2006-2007. Exceptional drought conditions ([D4] highest ranking drought classification) within the Falling Creek watershed throughout the Year 3 monitoring season likely contributed to degraded benthic macroinvertebrate collections. Data obtained from the North Carolina Drought Management Advisory Council indicates that drought conditions in Richmond County did not exceed the Moderate classification (D1) during the 2009 growing season. This improvement in drought conditions during Year 4 monitoring is a likely cause of the resulting increases in the total number of organisms, total taxa, and overall species diversity (richness). The slight increase in biotic index values (following a decrease in 2006 and 2007 indicative of improved water quality) shows that some variability between years may be present.

Data from 2006 monitoring suggests that there may have been an initial colonization spike of opportunistic species during the early successional stages of stream development. While values from 2006 (total organisms and EPT richness) have not been surpassed in subsequent monitoring years, the data indicates a substantial increase from baseline (2005) values for all comparative metrics. As the restored stream continues shifting towards reference reach conditions, it is expected that macroinvertebrate communities will further migrate more towards assemblages typical of the region.


2.1.4 Habitat Assessment

North Carolina Division of Water Quality (NCDWQ) Habitat Assessment Forms (HAFs) were completed at each cross-section location across the Site (Appendix D). Several HAF scores increased during Year 3 monitoring demonstrating an increased availability and quality of aquatic habitat at those locations. This improvement is largely due to the favorable prevalence of in stream habitat including sticks, snags, logs, leafpacks, and macrophytic vegetation. Limitations to habitat scores result from the lack of canopy trees within the former pond that would otherwise provide stream shading and allochthonous input for instream habitat. The HAF scores are summarized in Table 8.

Table 8. NCDWQ Habitat Assessment Form Scores													
Cross costion		Score											
Cross-section	MY1	MY2	MY3	MY4	MY5	MY+							
XSR1 (Reference)	98	98	96	98									
XSR4 (Reference)	97	97	96	95									
XS1	78	95	91	93									
XS2	80	80	82	89									
XS3	84	98	93	93									
XS4	63	66	75	83									
XSR2	88	93	88	88									
XS5	69	80	83	83									
XSR3	85	90	88	87									
XS6	65	71	74	77									
XS7	74	76	82	77									
XS8	86	90	91	90									

Stream habitat characterizations depicting aquatic in-stream habitat composition were completed using plan-view drawings derived from total station surveys of the stream monitoring reaches. Drawings were updated in the field through visual observation and habitat composition was transcribed onto each drawing by hand. Drawings were digitized using GIS technology to determine rough estimates of habitat type representation. Representative habitat includes adjacent stream bank trees, root mats/balls, stumps, coarse woody debris, and undercut banks. Figure 3 (Appendix A) depicts the Year 4 stream habitat composition. Compared to previous monitoring years, Reaches 2 and 3 show both an increase in habitat quantity, and habitat type. The abundance of macrophytic vegetation within Reaches 2 and 3 compared to the reference reaches (1 and 4) is likely due to the lack of canopy trees and resulting sunlight within the former pond. The macrophytic vegetation is expected to diminish as the riparian community continues developing, and shading increases.

During Year 4 benthic macroinvertebrate monitoring, a decrease in the number of collector/gatherers, scrapers and shredders was observed. Year 4 monitoring also indicates a substantial increase in the number of predators. This trend may suggest that predator populations have increased as a result of an increased food source (shredders) during Year 3 monitoring. The shredder population increase during Year 3 monitoring may be directly linked to drought conditions that led to an increased abundance of organic matter within the stream channel (due to reduced flow and transport). The link between shredders and predators is supported by the fact that both feeding groups share the same aquatic habits of sprawling and borrowing. Year 4 monitoring indicates a continued progression towards a stable aquatic community with a continued shift from early successional composition. The following graph displays functional feeding group composition following dam removal at the Site.

Graph 2. Functional Feeding Group Composition

2.2 Wetland Assessment

2.2.1 Vegetation Assessment

Eight (8) 10 x 10 meter plots were sampled in accordance with the Carolina Vegetation Survey Protocol (Figure 4, Appendix A). Six of the vegetation plots (VP 2-7) were sampled in the same locations as previous years. Vegetation plots 1 and 8 were relocated this year following the remedial grading activities (new plots VP 9-10). As discussed with EEP, if vegetation success of remedial planted stems is on target at the end of Year 5, then no additional vegetative monitoring will be required. Planted stems (woody) were marked with flagging and the species, height, diameter, vigor and coordinate location within each plot was recorded. Volunteer species where noted and placed into height classes.

Success criteria for vegetation requires that at least 320 stems per acre must survive after the completion of the third growing season. The required survival criterion will decrease by 10 percent per year after the third year of vegetation monitoring (i.e. for an expected 290 stems per acre for Year 4, and 260 stems per acre for Year 5). The Site is currently meeting the established success criteria for vegetation based on the survival of the planted species with an average density of 552 trees per acre. Some large volunteer species may have been included in the planted species inventory, for instances in which the yearly monitoring species totals exceed the initial totals. Including all volunteer species raises the vegetation survival within the Site to 2,526 trees per acre.

An inventory of planted stems within plots 2-7 are given in Table 9, and an inventory of planted stems within new plots 9-10 are given in Table 9a. A tally of volunteer woody species is listed in Table 9b. Year 3 photographs are provided in Appendix E.

1	Table	9.	Sten	n Cou	unts f	for P	lanted Species Arranged by Plot								
			Plo	ts*			Initial	Year 1	Year 2	Year 3	Year 4				
Species	2	3	4	5	6	7	Totals	Totals	Totals	Totals	Totals**				
Trees															
Chamaecyparis thyoides	4	3	2	2	6	6	32	31	31	30	23				
Liriodendron tulipifera	0	1	0	0	0	0	6	6	3	1	1				
Magnolia virginiana	1	3	0	0	1	0	10	10	11	5	5				
Nyssa biflora	4	3	6	0	2	5	29	29	28	30	20				
Persea borbonia	0	0	0	0	0	0	1	1	1	0	0				
Pinus serotina	3	3	7	7	5	1	32	32	30	36	26				
Pinus taeda	0	0	0	1	0	0	12	12	12	4	1				

*Plots 1 and 8 were replaced following on-Site grading. See Table 9b.

**Totals lower due to loss of Plots 1 and 8.

Table 9a.Stem Counts for PlantedSpecies at New Plots										
Species	Plo	2009								
Species	9	10	Totals							
Trees										
Chamaecyparis thyoides	3	3	6							
Liriodendron tulipifera	3	0	3							
Magnolia virginiana	3	3	6							
Nyssa biflora	7	11	18							

	Tabl	e 9b.	Sten	ı Cou	nts fo	ies Arraı	nged by P	lot				
Species				Pl	ots		Year 1	Year 2	Year 3	Year 4		
_	2	3	4	5	6	7	9 *	10*	Totals	Totals	Totals	Totals**
Trees												
Acer rubrum	5	4	11	0	0	4			12	16	25	24
Betula nigra	0	0	0	0	0	0			0	5	0	0
Chamaecyparis thyoides	0	0	2	0	3	2			0	4	13	7
Cyrilla racemifllora	0	3	0	0	2	0			1	0	4	5
Liquidambar stryaciflua	1	1	0	0	0	0			0	1	1	2
Liriodendron tulipifera	0	0	0	0	4	0			14	7	5	4
Magnolia virginiana	6	0	0	0	0	0			2	1	8	6
Nyssa biflora	0	0	0	0	1	0			0	1	0	1
Pinus serotina	45	89	9	62	122	12			105	168	532	339
Pinus taeda	0	0	0	0	0	0			0	29	6	0
Salix nigra	1	0	0	0	0	1			7	1	1	2
Shrubs												
Clethra alnifolia	0	0	0	0	0	0			1	1	0	0
Baccharis halimifolia	0	0	0	0	0	0			1	0	1	0
Kalmia angustifolia	0	0	0	0	0	0			1	0	0	0
Vaccinium corymbosum	0	0	0	0	0	0			0	2	0	0

*New vegetation plot established following on-Site grading. See previous Table 9a.

**Totals lower due to loss of Plots 1 and 8.

2.2.2 Groundwater Hydrology

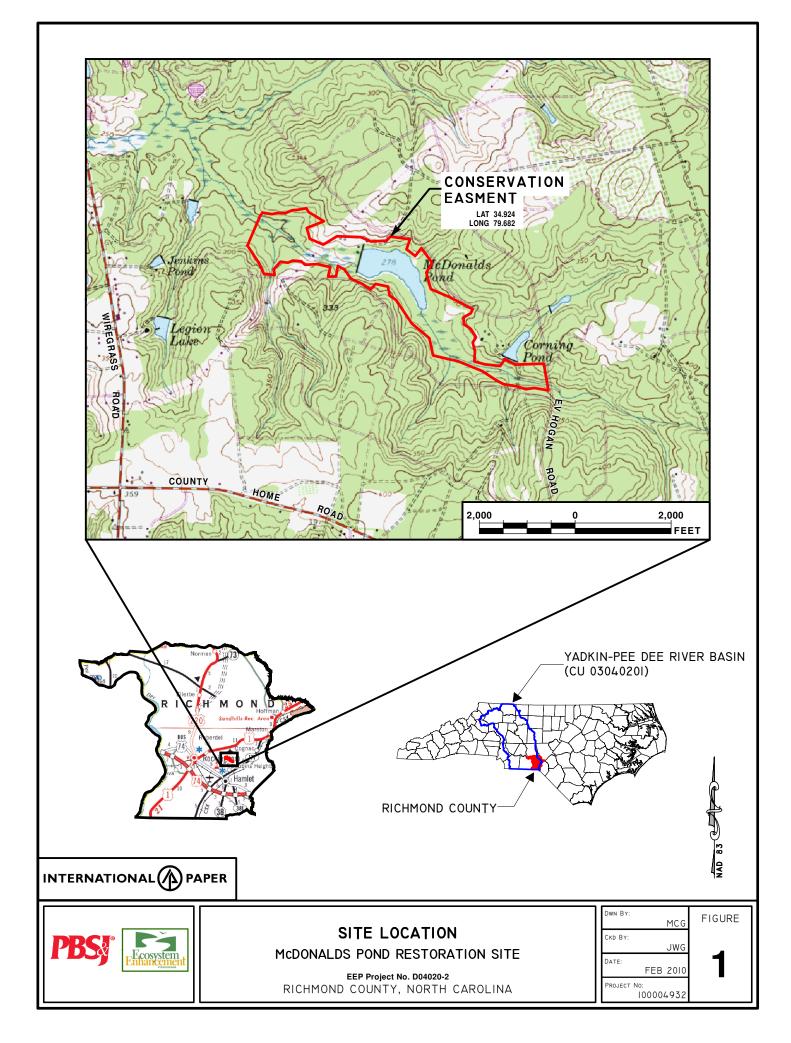
Success criteria for groundwater hydrology on the Site requires that wetland mitigation areas be inundated or saturated (within 12 inches of the surface) by surface or groundwater for at least 28 consecutive days (Richmond County, NRCS) or 12.5 percent of the growing season. Groundwater gauge locations are depicted in Figure 5 (Appendix A). Groundwater gauge hydrographs are plotted on Figure F-1 (2008) (Appendix F). Three of the four groundwater gauges (Gauges 1, 2, and 4) located on-Site are currently meeting the wetland hydrologic success criteria. The hydrologic success of Gauge 3 may be inferred based on visual observations of inundation. However, due to gauge malfunction and data loss, the frequency for which groundwater was within 12 inches cannot be determined.

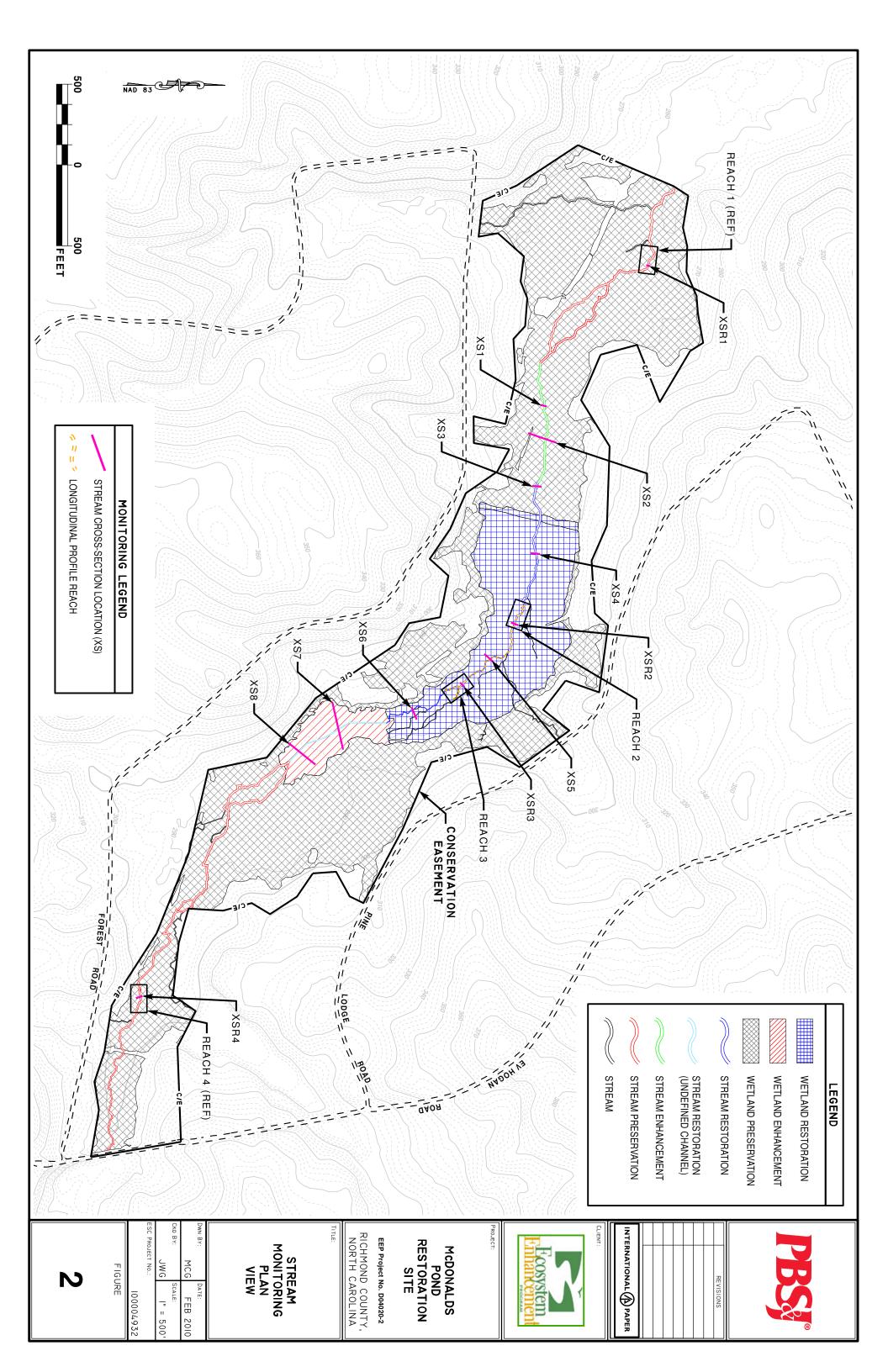
Due to numerous groundwater gauge malfunctions and data loss during Year 4 monitoring, PBS&J staff installed new gauges directly beside the existing gauges. The new gauges will ensure complete data collection in support of continued hydrologic success in the final year of monitoring.

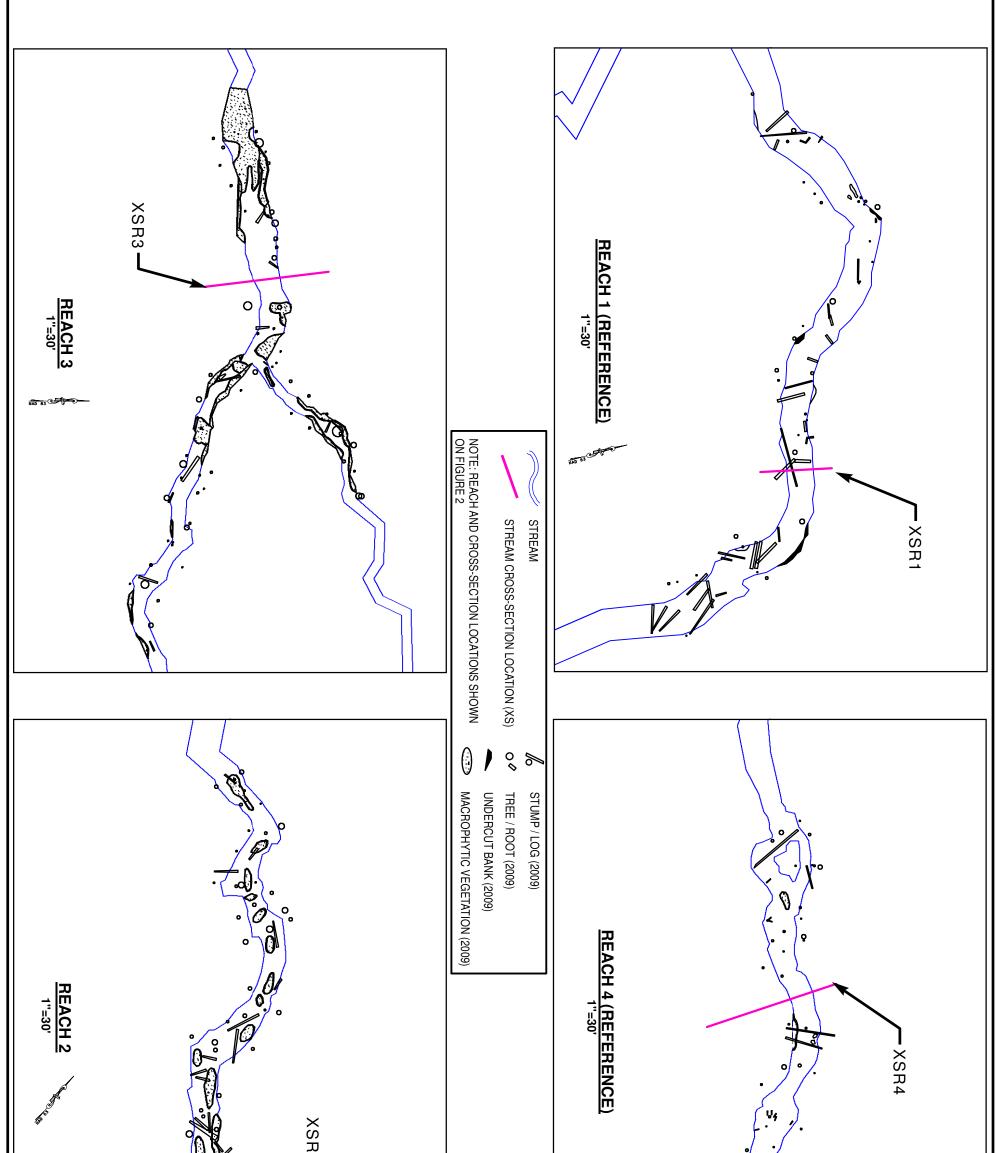
Table 10. Wetland Criteria Attainment										
Gauge ID	Gauge Hydrology Threshold Met?	Vegetation Plot ID	Vegetation Survival Threshold Met?							
C 1	Yes	2	Yes							
Gauge1	(19% of growing season)	3	Yes							
C	Yes	4	Yes							
Gauge2	(17% of growing season)	5	Yes							
C	N/A	6	Yes							
Gauge3	(gauge malfunction)	7	Yes							
0 1	Yes	9	N/A*							
Gauge4	(21% of growing season)	10	N/A*							

2.2.3 Wetland Criteria Attainment

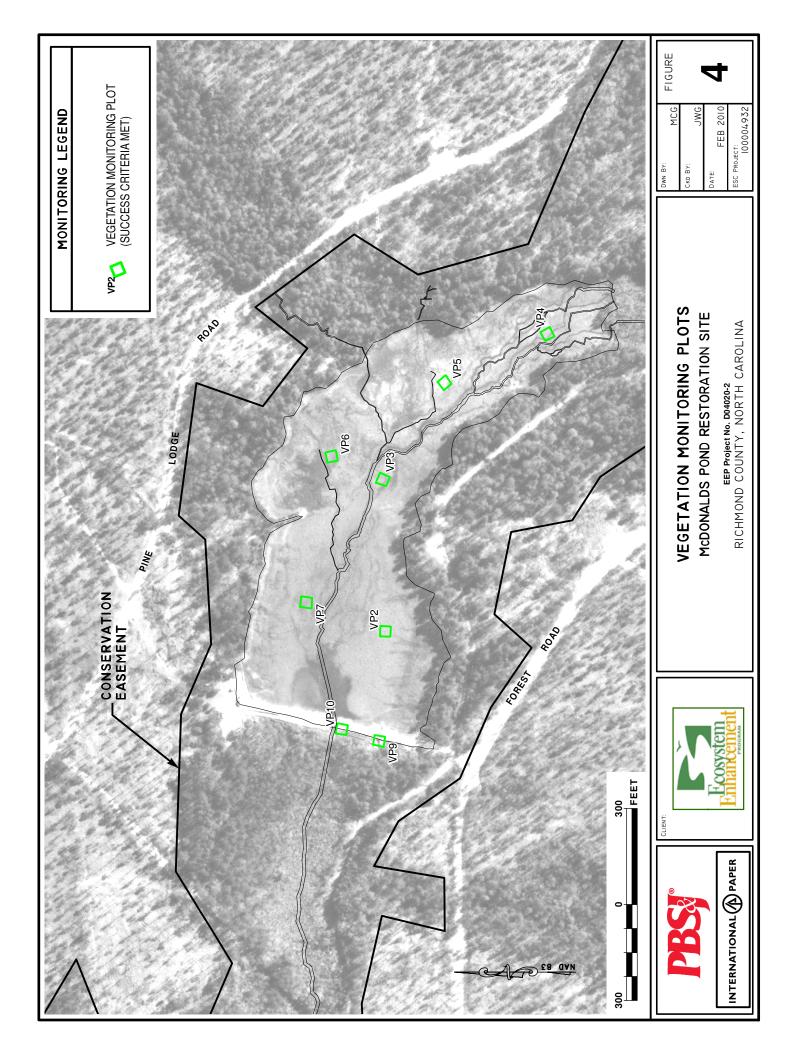
* Vegetation success of remedial planted stems will be evaluated during Year 5 monitoring


REFERENCES


- Harod, J.J. 1964. The Distribution of Invertebrates on Submerged Aquatic Plants in a Chalk Stream. Journal of Animal Ecology. Vol. 33, No. 2. (June 1964), pp. 335-348.
- Merritt, R.W. and K.W. Cummins. 1996. An Introduction to the Aquatic Insects of North America, Third Edition. Kendall-Hunt Publ.
- Natural Resources Conservation Service (NRCS). 1999. Soil Survey of Richmond County, North Carolina. United States Department of Agriculture.
- North Carolina Drought Management Advisory Council (NCDMAC). 2007. Statewide Drought Conditions Archive (online). Retrieved November 2007 from: www.ncdrought.org.
- Rosgen, D. 1994. Applied Fluvial Geomorphology. Wildland Hydrology: Pagosa Springs, CO.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.


This Page Left Blank Intentionally

APPENDIX A: FIGURES


EEP Project No. D04020-2



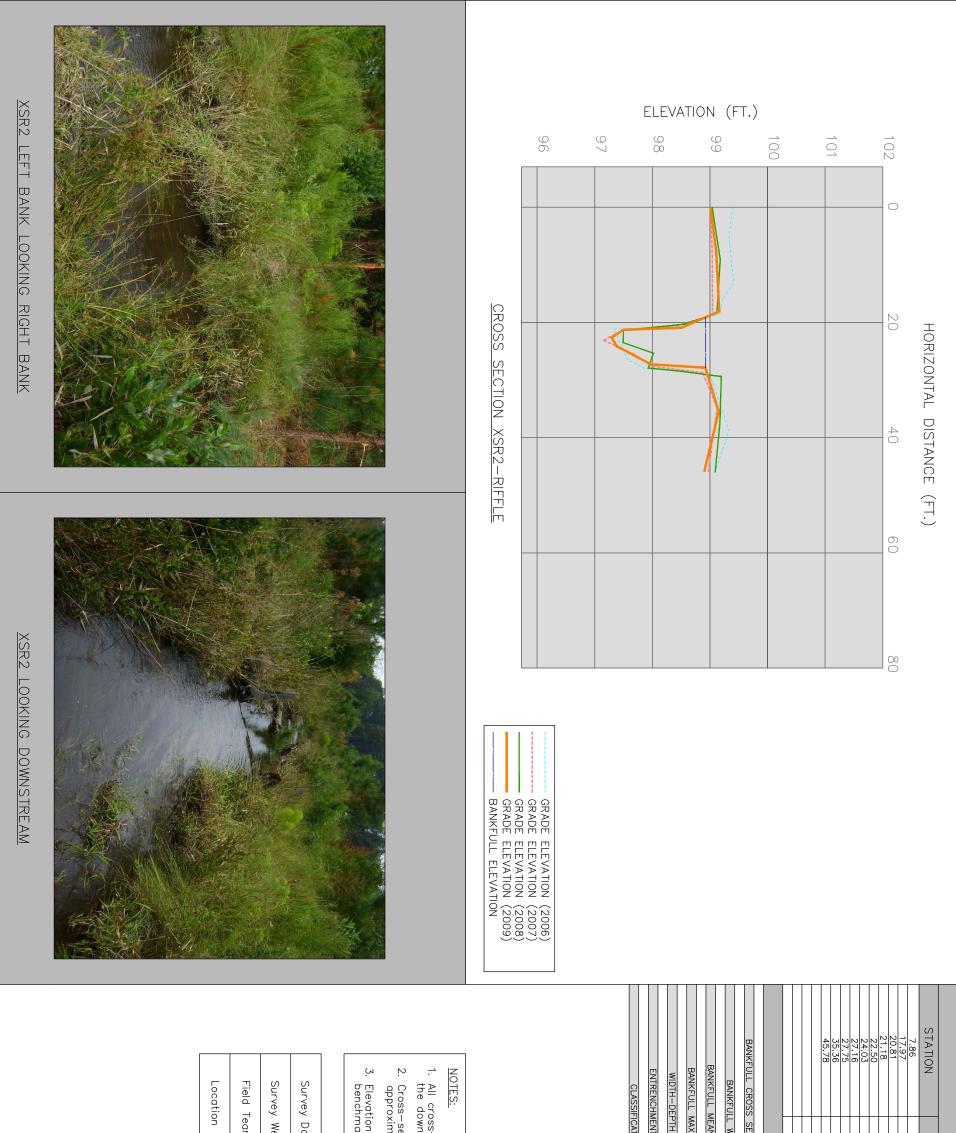
	P.	GR2		
ω	DWN BY: MCG FEB 2010 CKD BY: JWG SCALE: JWG AS SHOWN ESC PROJECT NO.: FIGURE FIGURE	STREAM HABITAT COMPOSITION	MCDONALDS POND RESTORATION SITE EEP Project No. D04020-2 RICHMOND COUNTY, NORTH CAROLINA	REVISIONS INTERNATIONAL PAPER

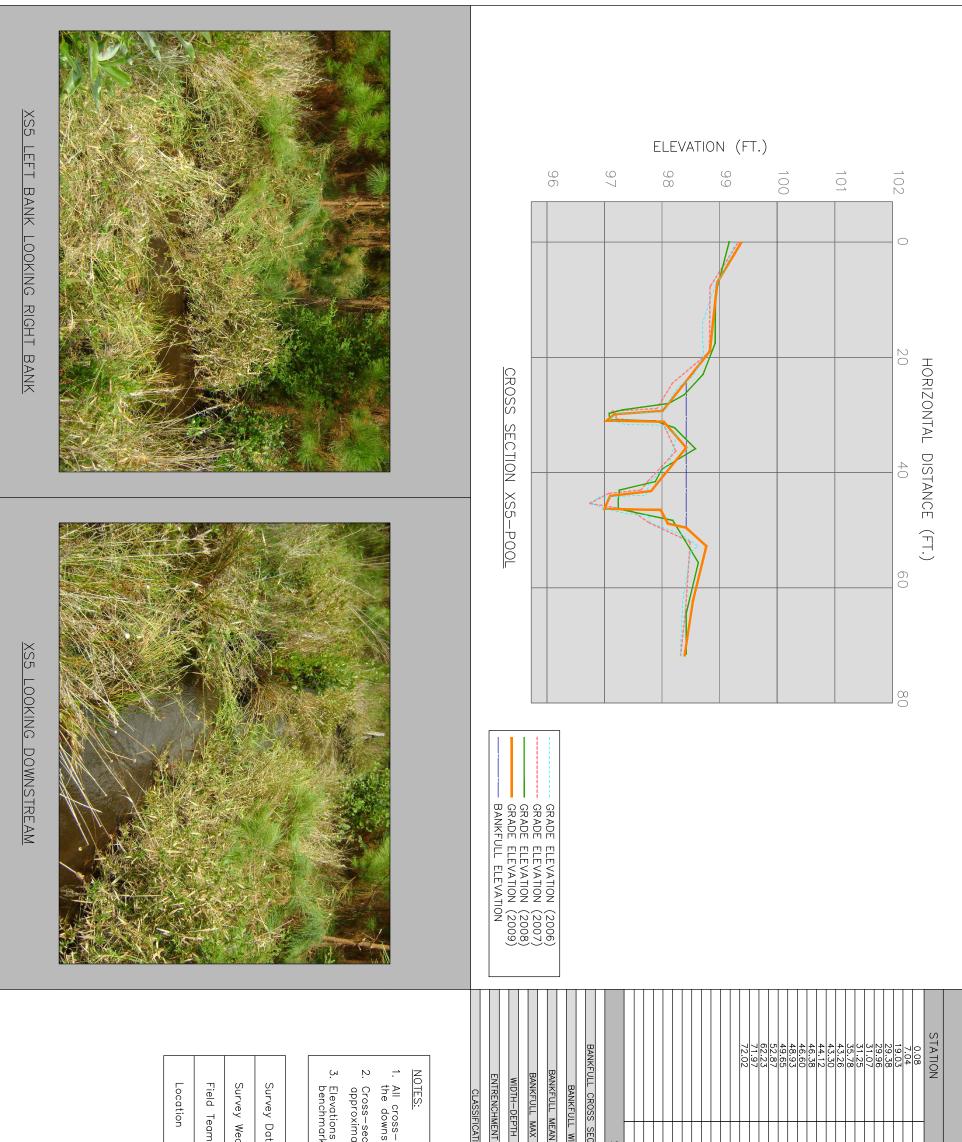
APPENDIX B: STREAM GEOMORPHOLOGY DATA

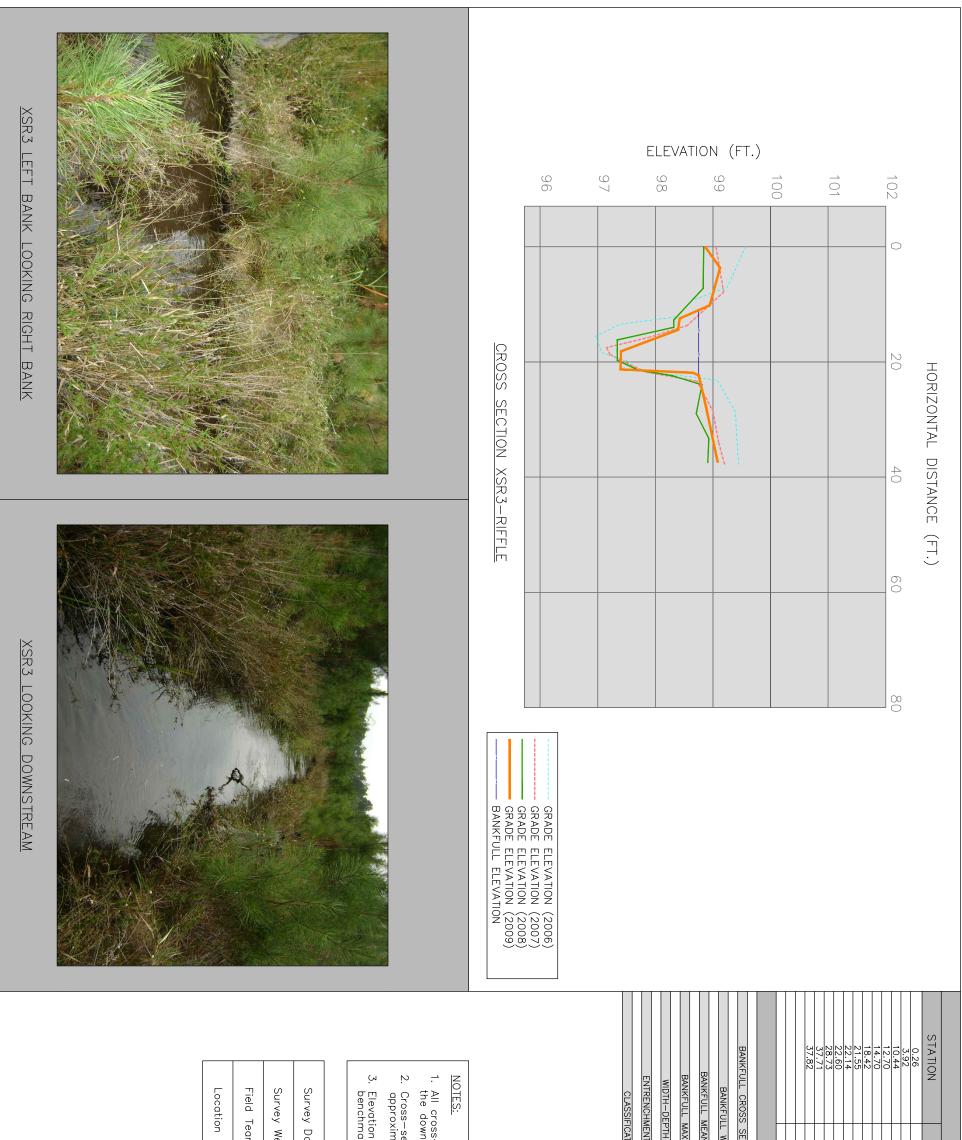
STI LEFT BANK LOOKING RIGHT BANK									96 CROSS SECTION XS1-		Q7		E 98			10N 99							HORIZONTAL DISTANCE	
XSI LOOKING DOWNSTREAM									1POOL														DE (FT.)	
	Location	Field Team	Survey Wea	Survey Date	3. Elevations benchmark	2. Cross-sect approximat	1. All cross-s the downst	NOTES:		CLASSIFICATIO	ENTRENCHMENT	WIDTH-DEPTH	BANKFULL MAX	BANKFULL MEAN	BANKFULL WID	20000		32.10	25.53 29 70	22.42 22.49	15.73	7.54	2.86	_

	Veather am	s-sections facing instream direction section stationing mate field location ark; left pin eleve	SUMMARY SECTIONAL AREA WIDTH AN DEPTH IX DEPTH H RATIO NT RATIO ATION	SURVEY DAT ELEVATION 99.61 98.67 98.75 98.45 97.92 98.55 98.55 98.55 99.59 99.59 99.26
	OCT. 2009 Sunny Schmid, Ge XS1	repre ns. ution=	DATA	6 9 5 8 8 2 12 5 8 8 5 7 7 7 4 1 OX
	Geratz	sents 100.0 ft.	6.4 SQ. FT. 10.9 FT. 0.9 FT. 18.2 36.7 N/A	FEATURE BLPIN BRPIN
Dsn. By: JWC Ckd. By: Scale: Project No.: SHEET SHEET SHEET	CROSS SECTION XS1-POOL	Project: McDONALDS POND RESTORATION SITE EEP Project No. D04020-2 RICHMOND COUNTY, NORTH CAROLINA	INTERNATIONAL PAPER	REVISIONS

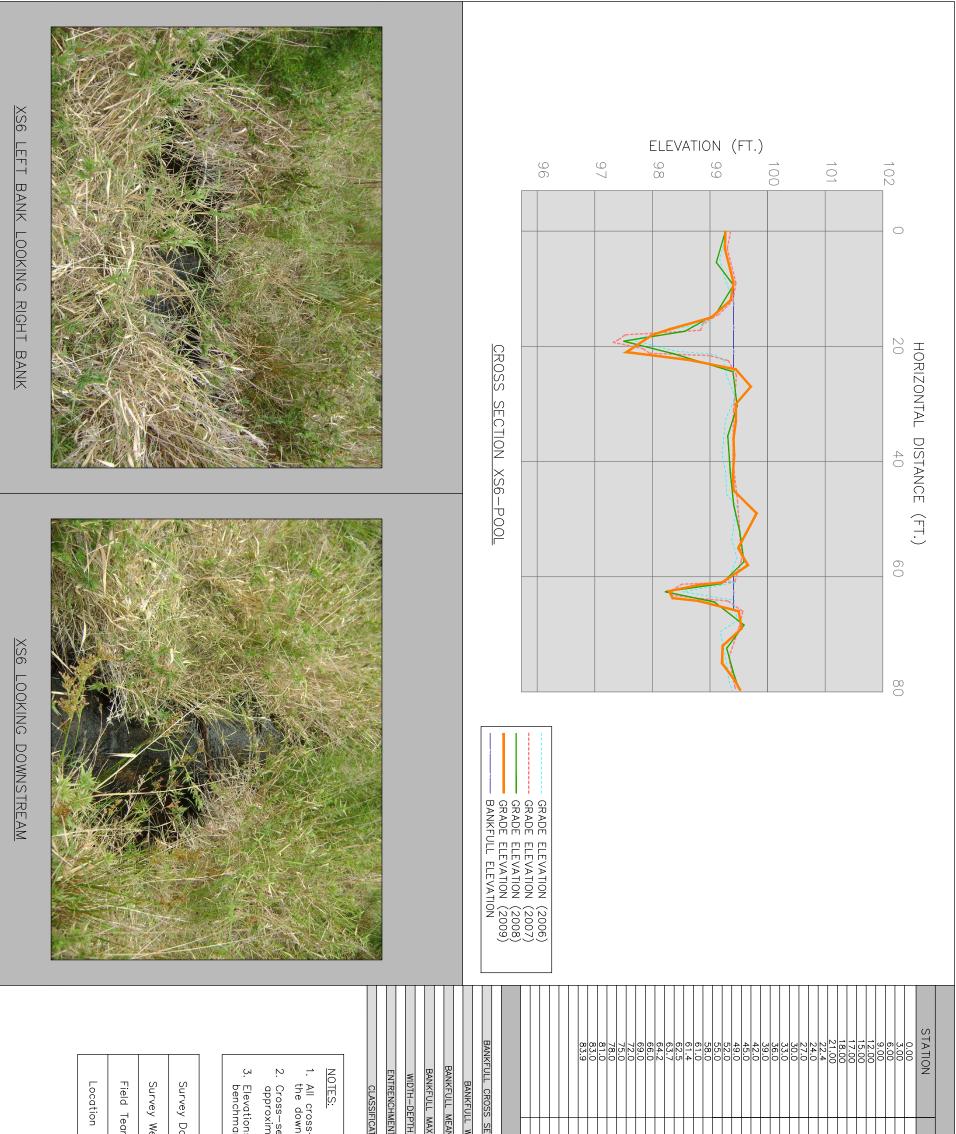
XS2 LEFT BANK LOOKING RIGHT BANK	ELEVATION (FT.) 103 0 20 40 60 80 1 97 GROSS SECTION XS2-
<image/>	DISTANCE (FT.) 100 120 140 160 180 200
Survey Date Survey Weather Field Team	STATION 0.04 7.49 10.48 1.0.48 1.0.48 1.0.48 1.0.48 1.0.48 1.0.48 1.0.48 1.0.48 1.0.48 1.0.48 1.0.48 1.0.48 1.0.48 5.1.45 5.1.45 5.1.45 5.1.45 5.1.45 5.1.45 5.1.45 5.1.45 5.1.45 5.1.45 5.1.45 1.12,15 1.12,15 1.12,15 1.12,15 1.14,5,17 1.15,17 1.16,65 1.21,54 1.16,55 1.21,55 1.25,555 1.25,555 1.25,555 1.25,555 1.25,555 1.25,5555 1.25,55555 1.25,5555555555555
Survey Weather Field Team	SURVEY D. ELEVATIC 99.19 99.67 99.67 99.69 99.69 99.65 99.65 99.76 99.76 99.76 97.88 97.88 97.88 97.88 97.88 97.88 97.77 97.74 97.74 97.88 97.74 97.74 97.74 97.75 97.74 97.75 97.74 97.75 97.88 97.75


		XS2	
B2	d, Geratz	Schmid	m
S J L L L		Sunny	Veather
100004932	2009	OCT. 2	ate
NO SCALE Project No.:	י=100.0 ft.	on relative pin elevation:	ns based ark; left p
e:	resents		nate field
Dsn. By: JWC JWC Ckd By: Date:		s facing direction	s-sections f nstream dire
CHANNELS			details
XS2-BRAIDED	DA5		ATION
CROSS SECTION	N/A*		H KATIO
	N/A*		X DEPTH
Title:	N/A*		AN DEPTH
NORTH CAROLINA	N/A*		
	N/A*	REA	ECTIONAL AREA
EEP Project No. D04020-2		RY DATA	SUMMAR
SITE			
	BRPIN	.98 .46	86 86
Enhancement		98.40 97.73 98.02	86 26 86
Hoosystem		.91 .46	86 26
7		.62 .45	76 26
~		.55 0 0	97 97
Client:		.20	97
		.18 .93	26 26
		.59	96 26
		.81	98 91
		.69 .75	26 26
		.02	97 97
	EC	.24	26 86 06
	EOW	3 <u>0.96</u>	76 26
REVISIONS		.00	86 26
		.08 .24	26 26 76
	EOW	.06	86 66
		.20 .75	86 66
		.67	86 66
	FEATURE	EVATION	ELEV,
		Y DATA	SURVEY


	XS3 Scale: Project 1	Sunny Schmid, Geratz	OCT. 2009	EEP unstream direction section stationing represents mate field locations. ons based on relative ork; left pin elevation=100.0 ft.	C5 M RE	2.4 FT.	ARY DATA 6.0 SQ. FT.		99.35 98.85 98.85 98.85 98.85 98.92 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.35 99.37 97.37 97.37	EOW
B3 SHEET	MCG Date: FEB 2010 NO SCALE No.: 1000004932	JWC JWC	CROSS SECTION XS3-RIFFLE	EP Project No. D04020-2 RICHMOND COUNTY, NORTH CAROLINA e:	McDONALDS POND RESTORATION SITE	Enhancement	Ŋ,	INTERNATIONAL PAPER	REVISIONS	BS

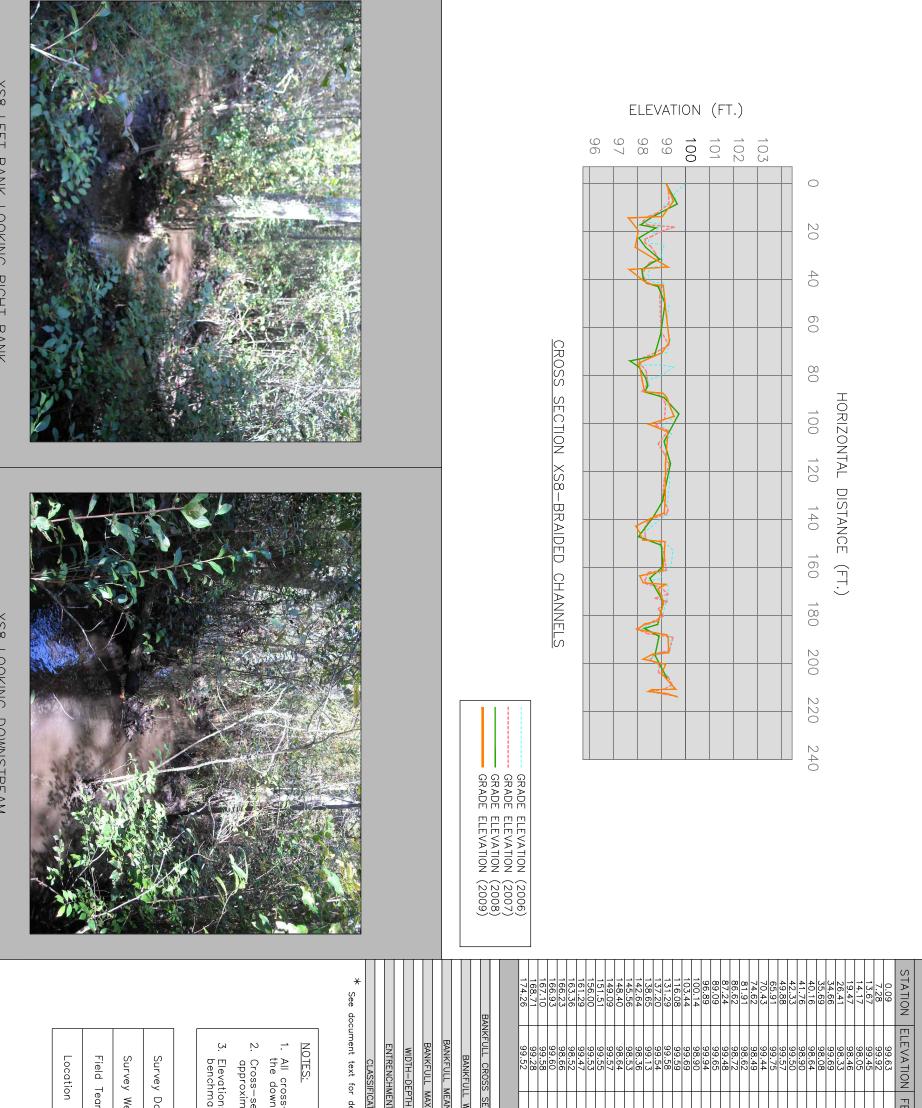

XS4 LEEL B	ELEVATION (FT.) 96 97 98 99 100 101 102
XS4 LEFT BANK LOOKING RIGHT BANK	O 20 40 (FT.) 20 40 (FT.) 20 40 (FT.) 20 40 (FT.)
<image/>	(FT.) 60 80 80 The second seco
NOTES: 1. All cross-set the downstre 2. Cross-sectic approximate 3. Elevations be benchmark; Survey Weath Field Team Location	SU STATION 0.11 8.051 8.051 16.88 16.88 16.88 16.88 23.61 23.61 24.18 30.924 40.95 40.95 40.95 40.95 42.46 43.66 43.66 43.66 43.66 61.86 BANKFULL CROSS SECTION BANKFULL MEAN DEF BANKFULL MEAN DEF BANKFULL MAX DEF WIDTH-DEPTH RAT EUTRENCHMENT RA CLASSIFICATION

D SHEET			
Project No.: 100004932		XS4	
	mid, Geratz	Schmid	m
Ckd. By: Date: MCG FEB 2010	ny	Sunny	Veather
By: JWC	. 2009	OCT.	Date
	s. ve lion=100.0 ft.	section stationing represents mate field locations. ns based on relative ark; left pin elevation=100.C	mate field mate field ark; left
RICHMOND COUNTY, NORTH CAROLINA		direction	s-sections facing
cDONALD POND SITE	25.0 20.0 DA5/C5		H RATIO NT RATIO ATION
Enhancement		AREA	
		RY DATA	
	BRPIN	8.81 7.78 9.71 9.21 9.21	စစ္စစ္စစ္စစ္စစ္စ
REVISIONS		7.44 8.18 8.94 9.01 7.72	مامامام
PBS	FEATURE BLPIN	JRVEY DATA ELEVATION 99.02 98.91 98.92 99.26 97.58 97.58	SURVEY ELEVA 99.0 98.9 98.9 99.2 97.3 97.3



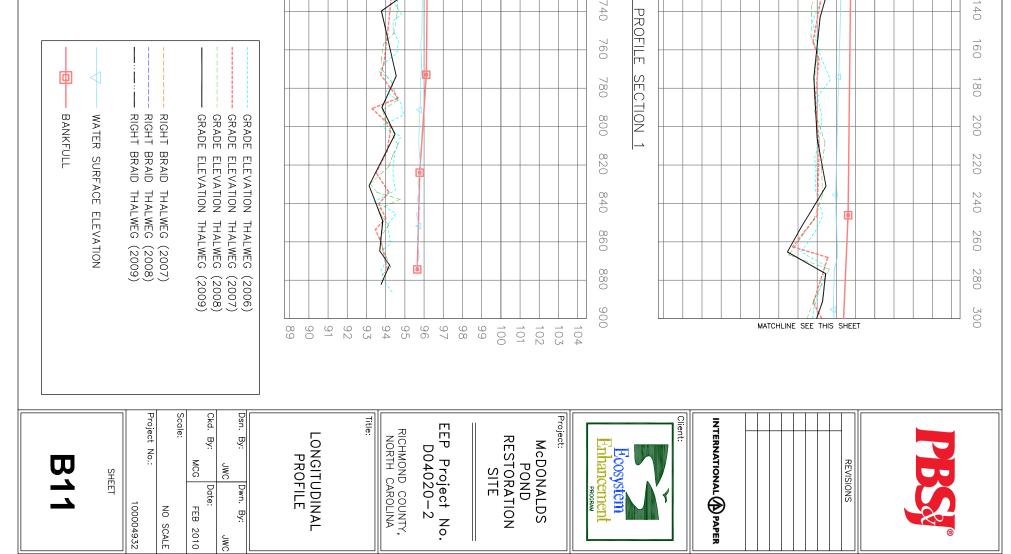
B5			
SHEET			
Project No.: 100004932			
Ckd. By: Date: MCG FEB 2010			
By: JWC			
		XSR2	
	, Geratz	Schmid,	am
CROSS SECTION		Sunny	Veather
	2009	OCT. 2	Date
RICHMOND COUNTY, NORTH CAROLINA	=100.0 ft.	pin elevation=	ark; left p
LLP Project No. D04020-2	esents		mate field mate field
,	-	irection	s-sections facing
RESTORATION SITE			:
McDONALDS			
Drotoot:			
Enhancement			
Client:	E5		ATION
	51.1		NT RATIO
	8.0		'H RATIO
	1.6 FT.		AX DEPTH
	0.0 FI. 1.1 FT.		AN DEPTH
		EA	SECTIONAL AREA
		RY DATA	SUMMARY
REVISIONS			
	BRPIN	.14	100 99.
		91 91 91 91	98.37 98.96 99.01
		49	98.
	FEATURE BLPIN	A TION	ELEVATION
		Y DATA	SURVEY

JWC JWC Ckd. By: Date: Scale: NO SCALE Project No.: 100004932 SHEET SHEET SHEET			
Dsn. By: Dwn. By:	XSR3		
	Schmid, Geratz	Sc	am
CROSS SECTION	Sunny		Weather
	CT. 2009	OCT.	Date
RICHMOND COUNTY, NORTH CAROLINA Title:	elevation=100.0 ft.	pin n	nark; left
EEP Project No. D04020-2	imate field locations.	loc	imate fi
McDONALDS POND RESTORATION SITE		wnstream direction	ss-secti
Froject:			
Ŗ	G		CATION
Client:	35.4		ENT RATIO
IN LERNAL IONAL (B) PAPER	14.1		TH RATIO
	1.4 FT.	-	IAX DEPTH
	0.8 FT.	I	- WIUTH -AN DEPTH
	8.8 SQ. FT.	- AREA	SECTIONAL
	▶	MARY DATA	SUMMARY
REVISIONS	BRPIN	99.20 99.97	
		98.87 99.01	
		97.52 97.51	
		99.06 98.54	
	BLPIN	98.98 99.24	
	FEATURE		EL
		VFY DATA	SURVFY



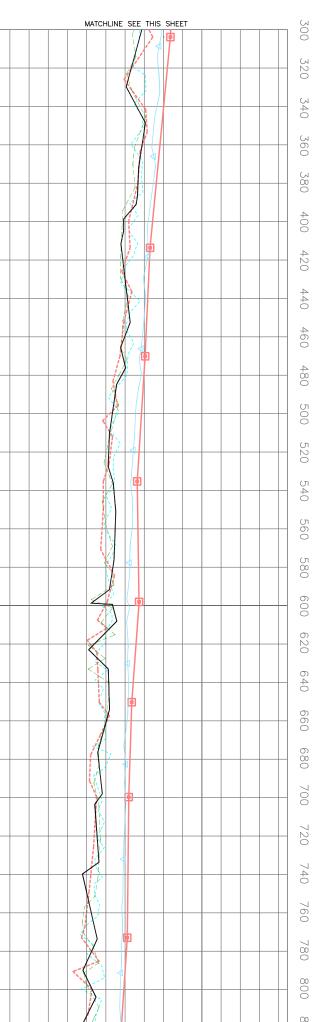
B 8			
100004932 SHEET		ACC	
Project No.: NO SCALE			
	. Geratz	Schmid.	am
Ckd. By: Date: MCG FEB 2010		Sunny	Veather
By: JWC	2009	OCT. 20)ate
	=100.0 ft.	on relative pin elevation:	ns based ark; left p
CROSS SECTION	esents	nstream direction section stationing represents mate field locations.	nstream d section sto mate field
Title:		s facing	s-sections
RICHMOND COUNTY,	DA5/C5		AIION
D04020-2	15.8		NT RATIO
	31.6		H RATIO
	1.9 FT.		X DEPTH
SITE	0.7 FT.		AN DEPTH
RESTORATION	22.1 FT.		
McDONALDS	15.4 SQ. FT.	ΈA	ECTIONAL AREA
		RY DATA	SUMMAR
PROGRAM			
hano			
	BRPIN	.24	
R		99.35 99.52	
Client:		.13	66
		./2 .42	00 99 88
		.21	86 86
		.13 .73	
		.41	.66 66
		./3	86 86
		.32	999
		.33 .34	.66 66
REVISIONS		.37	66 66
		.37	00 99 0
		.47 E0	97.
		.23	98
		.28	86 66
		.18 .92 77	00 900 900
	BLPIN	.19	
	FEATURE	EVATION	ELEV,
		Y DATA	SURVFY

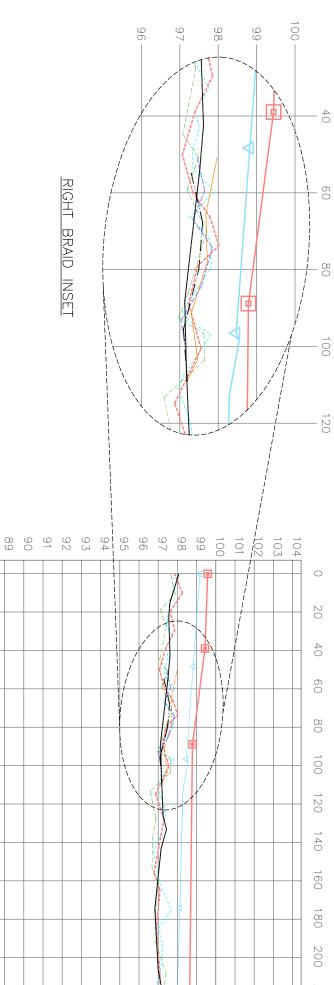
<image/>	ELEVATION (FT.)
<image/> <image/>	BOISTANCE (FT.) 60 180 200 220 240 260 280 300 320 Image: Strain of the strai
	STATION ELEVATION FE 0.06 99.05 7.59 98.10 27.59 98.10 27.59 97.94 109.96 97.86 1109.96 97.86 1109.96 97.86 1114.68 97.47 183.12 96.48 1114.68 97.47 195.82 96.48 1113.68 97.47 195.82 96.47 195.82 96.47 195.82 96.47 195.82 96.47 195.82 97.47 240.92 97.52 240.92 97.55 240.92 97


B9			
		XS7	
Scale: NO SCALE	, Geratz	Schmid,	am
Date:		Sunny	Veather
Dwn. By:	2009	OCT. 2)ate
CROSS SECTION XS7-BRAIDED CHANNELS	=100.0 ft.	nstruction stationing represents mate field locations. ns based on relative ark; left pin elevation=100.0	ark; left p
RICHMOND COUNTY, NORTH CAROLINA Title:		facing	s-sections facing
EEP Project No. D04020-2	- 240		details
	N/A*		NT RATIO
SITE	N/A*		H RATIO
RESTORATION	N/A*		VX DEPTH
POND	N/A*		AN DEPTH
	N/A*		WIDTH
	N/A*	EA	SECTIONAL AREA
Enhancement PROGRAM		Y DATA	SUMMARY
Ecosystem			RRPIN
Ļ			
Client:			
INTERNATIONAL			
)			
REVISIONS			
REVISIONS			
	ELEVATION FEATURE	STATION	BLPIN
		DATA	SURVEY

XS8 LOOKING DOWNSTREAM

XS8 LEFT BANK LOOKING RIGHT BANK


B10					
100004932 SHEET			XS8	П	Location
Project No.:		id, Geratz	Schmid,	Team	Field T
. MCC			Sunny	Weather	Survey
JWC Date:		2009	OCT.	Date	Survey
P P] [on=100.0 ft.	pin elevation=	benchmark; left p	bench
CROSS SECTION XS8-BRAIDED		presents	locations.	Cross-section stationing represents approximate field locations.	appro
			s facing lirection	cross-sections facing downstream direction	All cro the do
NORTH CAROLINA					OTES:
RICHMOND COUNTY				r details	it text for
EEP Project No.	DA5			CLASSIFICATION	CLASSIF
	N/A*			VIDIH-DEPIH RAIIO	VIDTH-DE
SITE	N/A*				
RESTORATION	N/A*			MEAN DEPTH	NKFULL N
McDONALDS	N/A*		Ĺ	- WIDTH	BANKFULL
Project:		T	-	SECTIONAL	
Enhancement Process				SUMMARY	9.53 9.50 9.58 9.52 9.52
Client:					9.57 9.55
					9.13 8.36 8.53
					9.59 9.58
					9.48 9.65
REVISIONS	BRPIN	99.01 98.88 99.68	210.77 211.51 212.46		9.57 9.75 9.44
		98.66 99.60 99.43 100.01	198.02 200.20 204.07 210.61		8.64 9.50
PBS		98.72 98.42 99.65 99.70 99.72	183.36 185.74 187.99 189.09 195.37 196.11		0.92 0.45 0.45 0.33 60 60
	DN FEATURE		S	FEATURE BLPIN	VATION 19.63
			Y DATA	SURVEY	



LONGITUDINAL

BANKFULL SLOPE: 0.0044 WATER SURFACE SLOPE: 0.0041

IVIC	Donalds Po TWG	WS	BKF	Joingituu	TWG	WS	BKF
Station	Elevation	Elevation	Elevation	Station	Elevation	Elevation	Elevation
0.0	98.2	99.1	99.7	452.4	96.2		
15.0	97.6			466.3	95.8		
22.8	97.5			471.3	96.0		
41.6	97.6			484.4	95.5		
54.2	97.4			510.0	95.2	96.5	96.8
87.7	97.1			527.5	95.1		
108.1	97.2			535.1	95.3		
124.5	97.2			551.8	95.1		
133.2	97.5			574.7	95.4		
141.4	97.1	92.2	98.8	591.7	95.3		
176.5	96.9			595.0	94.2		
209.3	97.0			599.8	95.4		
231.1	97.5			614.2	95.5		
242.2	96.8	98.0	98.7	626.4	94.1		
257.1	96.1			636.0	95.1	96.2	96.5
265.4	95.7			647.0	95.3		
278.4	97.4			678.4	94.6		
290.2	97.4			696.3	94.7		
302.5	96.8			716.0	94.5		
330.1	96.1	97.8	98.1	728.3	94.7		
343.6	97.2			766.6	93.9		
355.1	91.2			778.9	94.4		
370.7	96.6			790.2	93.1	95.8	96.0
384.7	96.6			809.9	94.1		
390.7	96.4			830.9	93.2		
397.5	95.9			850.9	93.8		
402.7	95.9	97.2	97.3	864.4	93.7		
416.3	95.8			872.1	94.3		
434.1	96.3			881.8	93.8		

APPENDIX C: AQUATIC COMMUNITY DATA

			Reach 1			Reach 4
SPECIES	T.V.	F.F.G.	(Reference)	Reach 2	Reach 3	(Reference)
ANNELIDA						
Oligochaeta	*10	CG				
Tubificida		~~				
Tubificidae w.o.h.c.	7.1	CG				1
Lumbriculida	_	~ ~				
Lumbriculidae	7	CG	1		1	1
ARTHROPODA						
Crustacea		~ ~				
Amphipoda		CG				
Crangonyctidae		~ ~				
Crangonyx sp.	7.9	CG				2
Decapoda						
Palaemonidae						
Palaemonetes sp.	7.1	CG	1			
Insecta						
Ephemeroptera						
Baetidae		CG				
Acerpenna pygmaeus	3.9			2		
Procloeon sp.	5			4	1	
Ephemerellidae		SC				1
Eurylophella sp.	4.3	SC		5	1	
Ephemeridae		CG				
Hexagenia sp.	4.9	CG		1	1	1
Heptageniidae		SC				
Maccaffertium (Stenonema) sp.		SC		6	2	3
Leptophlebiidae		CG	1	1	2	
Paraleptophlebia sp.	0.9	CG			1	
Odonata						
Aeshnidae		Р				
Boyeria vinosa	5.9	Р	8	16	2	4
Calopterygidae		Р				
Calopteryx sp.	7.8	Р	1	16	1	3
Coenagrionidae		Р				
Argia sp.	8.2	Р	1	7	2	
Cordulegastridae		Р				
Cordulegaster sp.	5.7	Р		1		8
Gomphidae		Р	4	2	7	
Dromogomphus armatus				2		
Gomphus sp.	5.8	Р	1	2		3
Hagenius brevistylus	4	Р		1		
Progomphus obscurus	8.2	Р	2			3
Libellulidae		Р		1		1
Helocordulia sp.	4.8	Р			1	
Ladona sp.				1	1	
Macromia sp.	6.2	Р	1	2 8	1	
Neurocordulia alabamensis			9	8	2	
Neurocordulia sp.	5				1	

SPECIES	т.v.	F.F.G.	Reach 1 (Reference)	Reach 2	Reach 3	Reach 4 (Reference)
Plecoptera		~~~				
Leuctridae		SH	. –		_	
Leuctra sp.	2.5	SH	15	34	6	49
Perlidae		Р	1			
Acroneuria sp.		Р	9			
Acroneuria lycorias	2.1	Р	1			_
Eccoptura xanthenes	3.7	Р	1			7 2
Perlesta placida sp. gp.	4.7	Р				2
Hemiptera						
Veliidae		Р				
Microvelia sp.		Р				1
Rhagovelia obesa		Р				2
Megaloptera		_				
Corydalidae		Р				
Nigronia serricornis	5	Р	5	2	1	3
Trichoptera						
Calamoceratidae		SH				
Anisocentropus pyraloides	0.9	SH				1
Hydropsychidae		FC	2			
Diplectrona modesta	2.2	FC	2	1		50
Hydropsyche sp.		FC	4	9		
Hydroptilidae		PI				
Hydroptila sp.	6.2	PI		1		
Lepidostomatidae		SH				
Lepidostoma sp.	0.9	FC		1	1	3
Leptoceridae		CG				
Oecetis sp.	4.7	Р		2	1	
Triaenodes sp.	4.5	SH			1	
Odontoceridae		SC				
Psilotreta sp.	0	SC		1		2
Philopotamidae		FC				
Chimarra aterrima	2.8	FC		10		
Wormaldia sp.	0.7	FC				3
Psychomyiidae		CG				
Lype diversa	4.1	SC				1
Coleoptera						
Elmidae		CG				
Optioservus sp.	2.4	SC		1		
Promoresia elegans	2.2	SC	1	1		
Stenelmis sp.	5.1	SC	2	1	1	1
Hydrophilidae	1	Р				
Sperchopsis tesselatus	6.1	CG		1		1
Diptera						
Ceratopogonidae	1	Р				4
Chironomidae						
Ablabesmyia mallochi	7.2	Р	1	1	4	1
Clinotanypus sp.	1	Р			2	1

SPECIES	T.V.	F.F.G.	Reach 1 (Reference)	Reach 2	Reach 3	Reach 4 (Reference)
	1		(х <i>у</i>
Conchapelopia sp.	8.4	Р	7	21	6	9
Corynoneura sp.	6	CG	1			
Cryptochironomus sp.	6.4	Р	1			
Lopescladius sp.			1			
Microtendipes rydalensis gp.			1	5	6	7
Nilotanypus sp.	3.9	Р	2			
Parachaetocladius sp.	0	CG	2			2
Parametriocnemus sp.	3.7	CG			1	3
Pentaneura inconspicua				6	1	2
Polypedilum flavum (convictum)	4.9	SH	1	-		2
Procladius sp.	9.1	Р		4	7	
Psectrocladius sp.	3.6	SH	1	15	6	12
Rheotanytarsus exiguus gp.	5.9		1	11	6	2
Stenochironomus sp.	6.5	SH	1		-	1
Tanytarsus sp.	6.8	FC		6		7
Tribelos jucundum	6.3	_		-		1
Xylotopus par	6	SH				7
Empididae	7.6	Р				
Neoplasta sp.		P				3
Simuliidae		FC				-
Simulium sp.	6	FC		4	1	
Tipulidae	-	SH				
Hexatoma sp.	4.3	Р	2	1		2
Tipula sp.	7.3	SH		1		2
<u> </u>						<u>n</u>
TOTAL NO. OF ORGANISMS			95	218	78	225
TOTAL NO. OF TAXA			35	42	32	44
NC BIOTIC INDEX assigned values			4.81	5.34	5.52	4.36

APPENDIX D: NCDWQ HABITAT ASSESSMENT FORM - COASTAL PLAIN

3/06 Revision 7

Habitat Assessment Field Data Sheet **Coastal Plain Streams**

TOTAL SCORE

Biological Assessment Unit, DWQ Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.

Stream	Location/road:	(Road N	ame)Co	unty
Date	CC#	Basin	Subbas	sin
Observer(s) Type of	Study: □ Fish □Be	enthos D Basinwide	□Special Study (Descr	ibe)
LatitudeLongitud	eEc	oregion: 🗆 CA 🗖 S	WP 🗆 Sandhills 🗆 CE	3
Water Quality: Temperature	⁰ C DO	mg/l Conductivity	(corr.)µS/cm	pH
Physical Characterization: Vis you observe driving thru the wa			t you can see from sar	npling location. Check off what
Visible Land Use:% %Fallow Fields%	Forest	%Residential %Industrial	%Active Pasture %Other - Describe:	% Active Crops
Watershed land use 🗆 Forest	☐ Agriculture □Urba	n 🗆 Animal operations	supstream	
Width: (meters) Stream Width varia Bank Height (from deepest part Flow conditions : □High □No	able Braided char of channel to top of b	nnel 🛛 Large river >2	m Depth: (m) Avg 55m wide	Max
Channel Flow Status Useful especially under A. Water reaches base o B. Water fills >75% of a C. Water fills 25-75% o D. Root mats out of wat E. Very little water in ch	abnormal or low flow f both banks, minima wailable channel, or f available channel, n er	l channel substrate expe <25% of channel substr nany logs/snags exposed	ate is exposed 1	
Turbidity: □Clear □ Slightly 7 Good potential for Wetlands R Details	estoration Project??	YES NO	Colored (from dyes) □C	dreen tinge
Channelized ditch Deeply incised-steep, straight b Recent overbank deposits Excessive periphyton growth	anks □Both banks □Bar develop □Heavy filam		□Channel filled in w □Sewage smell	ith sediment
Manmade Stabilization: $\Box N \Box$				e 🗆 Berm/levee
Remarks:				

TYPICAL STREAM CROSS SECTION DIAGRAM ON BACK

I. Channel Modification	
	Score
A. Natural channel-minimal dredging	15
B. Some channelization near bridge, or historic (>20 year old), and/or bends beginning to reappear.	10
C. Extensive channelization, straight as far as can see, channelized ditch	5
D. Banks shored with hard structure, >80% of reach disrupted, instream habitat gone	0
Remarks	Subtotal

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >50% of the reach is snags, and 1 type is present, circle the score of 16. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). <u>Mark as Rare, Common, or Abundant.</u>

_Sticks ____Snags/logs ____Undercut banks or root mats ____Macrophytes ____Leafpacks

	>50%	30-50%	10-30%	<10%	
	Score	Score	Score	Score	
4 or 5 types present	20	15	10	5	
3 types present	18	13	8	4	
2 types present	17	12	7	3	
1 type present	16	11	6	2	
No substrate for benthos coloniz		o fish cover		0	
□ No woody vegetation in riparian zone Remarks					Subtotal_
A. Substrate types mixed 1. gravel dominant			-		<u>Score</u> 15 13
A. Substrate types mixed 1. gravel dominant 2. sand dominant 3. detritus dominant			-		15 13 7
A. Substrate types mixed 1. gravel dominant 2. sand dominant 3. detritus dominant 4. silt/clay/muck dominant			-		15
A. Substrate types mixed 1. gravel dominant			-		15 13 7
A. Substrate types mixed 1. gravel dominant			-		15 13 7 4
A. Substrate types mixed 1. gravel dominant			-		15 13 7 4
A. Substrate types mixed 1. gravel dominant					15 13 7 4
1. gravel dominant 2. sand dominant 3. detritus dominant 4. silt/clay/muck dominant B. Substrate homogeneous 1. nearly all gravel 2. nearly all sand 3. nearly all detritus					15 13 7 4

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow.

present	Score
s Frequent (>30% of 100m length surveyed)	
a. variety of pool sizes	10
b. pools about the same size (indicates pools filling in)	8
s Infrequent (<30% of the 100m length surveyed)	
a. variety of pool sizes	6
b. pools about the same size	4
absent	
ep water/run habitat present	4
ep water/run habitat absent	0
-	Subtotal
	b. pools about the same size (indicates pools filling in) s Infrequent (<30% of the 100m length surveyed) a. variety of pool sizes

Remarks_

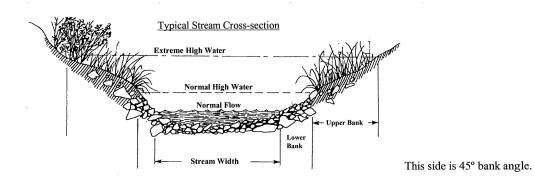
Page Total_____

V. Bank Stability and Vegetation	Score	Score
A. Banks stable or no banks, just flood plain 1. little or no evidence of erosion or bank failure, little potential for erosion	10	10
B. Erosion areas present		
1. diverse trees, shrubs, grass; plants healthy with good root systems	9	9
2. few trees or small trees and shrubs; vegetation appears generally healthy	7	7
3. sparse vegetation; plant types and conditions suggest poorer soil binding	4	4
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow	2	2
5. little or no bank vegetation, mass erosion and bank failure evident0	0	
		Total

Remarks_

VI. Light Penetration (Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead).

	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	7
D. Stream with minimal canopy - full sun in all but a few areas	2
E. No canopy and no shading	0
	Subtotal
Remarks	


VII. Riparian Vegetative Zone Width

Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks refer to the near-stream portion of the riparian zone (banks); places where pollutants can directly enter the stream.

	Lft. Bank	Rt. Bank
	Score	Score
A. Riparian zone intact (no breaks)		
1. zone width > 18 meters	5	5
2. zone width 12-18 meters	4	4
3. zone width 6-12 meters	3	3
4. zone width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. zone width > 18 meters	4	4
b. zone width 12-18 meters	3	3
c. zone width 6-12 meters	2	2
d. zone width < 6 meters	1	1
2. breaks common		
a. zone width > 18 meters	3	3
b. zone width 12-18 meters	2	2
c. zone width 6-12 meters	1	1
d. zone width < 6 meters	0	0
	Т	otal
marks		

Page Total_____

TOTAL SCORE _____

EEP Project No. D04020-2

APPENDIX E: VEGETATION MONITORING PLOT PHOTOS

Vegetation Plot 2

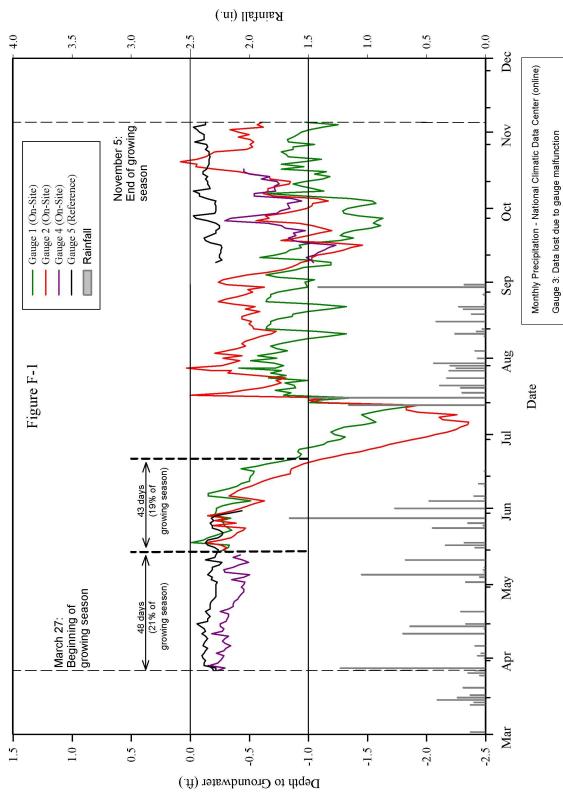
Vegetation Plot 3

Vegetation Plot 4

Vegetation Plot 5

Vegetation Plot 6

Vegetation Plot 7


Vegetation Plot 9

Vegetation Plot 10

APPENDIX F: GROUNDWATER GAUGE HYDROGRAPH

McDonalds Pond Restoration Site Groundwater Gauge Hydrographs Monitoring Year 4 (2009)

APPENDIX G. REMEDIAL GRADING AS-BUILT LETTER OF COMPLETION

September 16, 2009

Tony Doster, RF CF North Carolina Region Manager Resource Management Service, LLC 2704-C Exchange Drive Wilmington, NC 28405

RE: Completion of Remedial Grading McDonalds Pond Restoration Site, Richmond County, NC

100009505

Dear Tony:

PBS&J is pleased to notify you of the initiation of nuisance species management and completion of remedial grading at the McDonalds Pond Restoration Site (Site). Grading activities were targeted at lowering the elevation of the former dam in areas where the residual footprint remained above adjacent floodplain elevations. Grading activities also reduced the opportunity for beavers to re-construct dams along elevated areas of the former dam. Grading was carried out following initial nuisance species management by APHIS Wildlife Services. The following text, photos, and As-Built survey (Sheet 1) document the completed tasks.

Approximately 2 feet of surface material was removed from the former dam footprint (As-Built, Sheet 1). The compacted surface material of the former dam was removed and hauled away to an off-Site stock pile. The beaver dam was removed to restore flow, and the muck and sediment that was trapped behind the dam was spread across the newly graded surfaces to stimulate plant growth and enhance water retention. Rip-rap that was placed in the stream channel following the removal of McDonalds Pond (2005) was removed and the channel was re-shaped through the newly graded area. All graded areas within the former pond footprint were ripped for microtopography and enhanced water holding capacity. Grading was carried out near the southern Site boundary (As-Built Contour 277) in order to direct surface water from an adjacent seepage slope wetland onto the former dam footprint. Finally, a deep trench and spoil pile was created near the southern Site boundary to deter ATV travel onto the Site.

Plant survivorship was assessed within the limits of the former beaver dam impoundment. Mortality of plant species was found to be near 100 percent. Nearly all planted and volunteer species within the limits of the impoundment succumbed to inundation and/or were felled/uprooted by beaver. PBSJ suggests that inundated and graded areas be replanted. Site planting will be require a supplemental contract to be initiated in Winter/Spring 2010 (or sooner based on seedling availability). Planting should be performed within all graded areas, as well as within areas affected by beaver activity (total area approximately 2.0 acres). Plant species will be selected according to reference plant communities at the required stocking levels (680 trees/acre). Once planting is complete, an immediate inventory of planted stems will be taken.

Mr. Tony Doster Page 2 September 16, 2009

We look forward to providing continued services at the McDonalds Pond Restoration Site. A supplemental contract can be initiated once seedling availability and the subsequent timeline for Site planting can be determined.

Please feel free to call me if you have any questions or concerns.

Sincerely, PBSJ

Jens Geratz Senior Scientist

Attachments

Dam surface prior to grading activities

Beaver impoundment prior to grading activities

Dewatering the beaver impoundment

Removing beaver dam and beginning grading activities

Grading the former dam surface

Grading the former dam surface

Following grading, the former dam elevation now matches the surrounding floodplain

Stream channel flowing through newly graded area

Confluence of existing channel with newly reshaped channel

Finished grade near wetland boundary

Finished grade of former dam from southern Site boundary

Trench and soil pile at southern Site boundary

	EXISTING MAJOR CONTOURS AS-BUILT CONTOURS BENCHMARK	EXISTING MINOR CONTOURS	ND			
SHEEL SHEEL	Dwn. By: Ckd. By: TAL JG Date: Scale: SEP 2009 AS SHOWN	Trite: AS-BUILT	REMEDIAL REMEDIAL GRADING	Client: RESOURCE MANAGEMENT SERVICE, LLC	REVISIONS	